ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Курсовая работа: Энергетический метаболизм микроорганизмов. Основные методы изучения метаболизма бактерий и микроорганизмов

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток – колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность – 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

2. Питание бактерий

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Среди необходимых питательных веществ выделяют органогены – это восемь химических элементов, концентрация которых в бактериальной клетке превосходит 10-4 моль. К ним относят углерод, кислород, водород, азот, фосфор, калий, магний, кальций.

Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.

Для бактерий характерно многообразие источников получения питательных веществ.

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества – СО2);

2) гетеротрофы;

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ – витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Метаболиты и ионы поступают в микробную клетку различными путями.

Пути поступления метаболитов и ионов в микробную клетку.

1. Пассивный транспорт (без энергетических затрат):

1) простая диффузия;

2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков).

2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

Встречаются модифицированные варианты активного транспорта – перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

3. Метаболизм бактериальной клетки

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо– и эндоферментов метаболизма.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

а) дыхание;

б) брожение.

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

В микробной клетке ферменты являются биологическими катализаторами. По строению выделяют:

1) простые ферменты (белки);

2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

Различают также:

1) конституитивные ферменты (синтезируются постоянно независимо от наличия субстрата);

2) индуцибельные ферменты (синтезируются только в присутствии субстрата).

Набор ферментов в клетке строго индивидуален для вида. Способность микроорганизма утилизировать субстраты за счет своего набора ферментов определяет его биохимические свойства.

По месту действия выделяют:

1) экзоферменты (действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий);

2) эндоферменты (действуют в самой клетке, обеспечивают синтез и распад различных веществ).

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

4. Виды пластического обмена

Основными видами пластического обмена являются:

1) белковый;

2) углеводный;

3) липидный;

4) нуклеиновый.

Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

Распад белков в аэробных условиях называется тлением, в анаэробных – гниением.

В результате распада аминокислот клетка получает ионы аммония, необходимые для формирования собственных аминокислот. Бактериальные клетки способны синтезировать все 20 аминокислот. Ведущими из них являются аланин, глютамин, аспарагин. Они включаются в процессы переаминирования и трансаминирования. В белковом обмене процессы синтеза преобладают над распадом, при этом происходит потребление энергии.

В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты – полисахаридазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям: по пути анаэробного распада углеводов – брожению (гликолизу) и в аэробных условиях – по пути горения.

В зависимости от конечных продуктов выделяют следующие виды брожения:

1) спиртовое (характерно для грибов);

2) пропионионово-кислое (характерно для клостридий, пропиони-бактерий);

3) молочнокислое (характерно для стрептококков);

4) маслянокислое (характерно для сарцин);

5) бутилденгликолевое (характерно для бацилл).

Наряду с основным анаэробным распадом (гликолизом) могут быть вспомогательные пути расщепления углеводов (пентозофосфатный, кетодезоксифосфоглюконатный и др.). Они отличаются ключевыми продуктами и реакциями.

Липидный обмен осуществляется с помощью ферментов – липопротеиназ, летициназ, липаз, фосфолипаз.

Липазы катализируют распад нейтральных жирных кислот, т. е. ответственны за отщепление этих кислот от глицерина. При распаде жирных кислот клетка запасает энергию. Конечным продуктом распада является ацетил-КоА.

Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза фосфолипидов.

Бактерии способны синтезировать как насыщенные, так и ненасыщенные жирные кислоты, но синтез последних более характерен для аэробов, так как требует кислорода.

Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимой-РНК-полимеразы.

Рестриктазы вырезают участки ДНК, убирая нежелательные вставки, а лигазы обеспечивают сшивку фрагментов нуклеиновой кислоты. ДНК-полимеразы ответственны за репликацию дочерней ДНК по материнской. ДНК-зкависимые-РНК-полимеразы отвечают за транскрипцию, осуществляют построение РНК на матрице ДНК.

Микробиология: конспект лекций Ткаченко Ксения Викторовна

3. Метаболизм бактериальной клетки

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо– и эндоферментов метаболизма.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

а) дыхание;

б) брожение.

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

В микробной клетке ферменты являются биологическими катализаторами. По строению выделяют:

1) простые ферменты (белки);

2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

Различают также:

1) конституитивные ферменты (синтезируются постоянно независимо от наличия субстрата);

2) индуцибельные ферменты (синтезируются только в присутствии субстрата).

Набор ферментов в клетке строго индивидуален для вида. Способность микроорганизма утилизировать субстраты за счет своего набора ферментов определяет его биохимические свойства.

По месту действия выделяют:

1) экзоферменты (действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий);

2) эндоферменты (действуют в самой клетке, обеспечивают синтез и распад различных веществ).

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

1. Особенности строения бактериальной клетки. Основные органеллы и их функции Отличия бактерий от других клеток1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.2. В клеточной стенке бактерий содержится особый пептидогликан – муреин.3. В

Из книги Краткая история биологии [От алхимии до генетики] автора Азимов Айзек

Глава 12 Метаболизм ХимиотерапияБорьба с бактериальными заболеваниями во многом проще, чем с вирусными. Как уже было показано, бактерии проще размножаются в культуре. Бактерии более уязвимы. Живя вне клетки, они производят ущерб организму, отнимая у него питание либо

Из книги Тесты по биологии. 6 класс автора Бенуж Елена

КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ. ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СТРОЕНИЯ КЛЕТКИ 1. Выберите один наиболее правильный ответ.Клетка – это:A. Мельчайшая частица всего живогоБ. Мельчайшая частица живого растенияB. Часть растенияГ. Искусственно созданная единица для

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Клетки-коллективисты и клетки-одиночки В основе тесной кооперации клеток, входящих в состав многоклеточного организма, лежат по меньшей мере две важнейшие причины. Во-первых, каждая отдельно взятая клетка, будучи сама по себе на редкость умелым и исполнительным

Из книги Путешествие в страну микробов автора Бетина Владимир

Анатомия бактериальной клетки В предыдущей главе мы познакомились с тремя главнейшими типами бактериальных клеток. Одни из них имеют форму шариков, другие - палочек или цилиндриков, а третьи представляют подобие спирали.Какова же внешняя и внутренняя структура

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

5.3.1 Концепция формирования митохондрий и хлоропластов путем симбиоза бактериальной клетки и раннего эукариота Около 2 млрд лет тому назад на Земле создалась критическая для дальнейшего развития жизни ситуация. Фотосинтезирующие бактерии, размножившись, стали

Из книги Размножение организмов автора Петросова Рената Арменаковна

3. Деление клетки Способность к делению - это важнейшее свойство клетки. В результате деления из одной клетки возникают две новые. Одно из основных свойств жизни - самовоспроизведение - проявляется уже на клеточном уровне. Наиболее распространенным способом деления

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 8. Введение в метаболизм Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых

Из книги автора

Метаболизм фруктозы Значительное количество фруктозы, образующее при расщеплении сахарозы, прежде чем поступить в систему воротной вены, превращается в глюкозу уже в клетках кишечника. Другая часть фруктозы всасывается с помощью белка-переносчика, т.е. путем

Из книги автора

Метаболизм галактозы Галактоза образуется в кишечнике в результате гидролиза лактозы.Нарушение метаболизма галактозы проявляется при наследственном заболевании – галактоземии. Оно является следствием врожденного дефекта фермента

Из книги автора

Метаболизм лактозы Лактоза, дисахарид содержится только в молоке и состоит из галактозы и глюкозы. Лактоза синтезируется только секреторными клетками желез млекопитающих в период лактации. Она присутствует в молоке в количестве от 2 % до 6 % в зависимости от вида

Из книги автора

Глава 22. Метаболизм холестерола. Биохимия атеросклероза Холестерол – стероид, характерный только для животных организмов. Основное место его образования в организме человека – печень, где синтезируется 50% холестерола, в тонком кишечнике его образуется 15–20%, остальное

Из книги автора

Глава 25. Метаболизм отдельных аминокислот Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий

Из книги автора

Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий акцептор называют трансметилированием,

Из книги автора

Метаболизм фенилаланина и тирозина Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м путям: включается в белки или превращается в тирозин под действием специфической

Метаболизм микроорганизмов

Метаболизм – это совокупность биохимических процессов, протекающих в клетке и обеспечивающих ее жизнедеятельность. Клеточный метаболизм складывается из двух противоположно направленных процессов: энергетического метаболизма (катаболизма) и конструктивного метаболизма (анаболизма).

Энергетический метаболизм (катаболизм) – это совокупность реакций окисления различных восстановленных органических и неорганических соединений, сопровождающихся выделением энергии, аккумулируемой клеткой в форме фосфатных связей.

Конструктивный метаболизм (анаболизм) – это совокупность реакций биосинтеза, в результате которых за счет веществ, поступающих извне, и промежуточных продуктов, образующихся при катаболизме, синтезируется вещество клеток. Этот процесс связан с потреблением свободной энергии, запасенной в молекулах АТФ или других богатых энергией соединениях.

Конструктивный и энергетический метаболизм состоит из ряда последовательных ферментативных реакций, протекание которых условно можно представить следующим образом. На начальном этапе воздействию подвергаются молекулы химических веществ, которые служат исходными субстратами для метаболизма обоих типов. Последующие превращения включают ряд ферментативных реакций и приводят к синтезу промежуточных продуктов. Образующиеся на последних этапах конечные продукты конструктивных путей используются для построения вещества клеток, а энергетических – выделяются в окружающую среду.

Конструктивные и энергетические процессы протекают в клетке одновременно. У большинства прокариот они тесно связаны между собой. В процессе анаболизма синтезируются многочисленные ферменты, участвующие в энергетическом метаболизме. С другой стороны, в реакциях катаболизма образуется не только энергия для биосинтетических целей, но и многие промежуточные продукты, которые необходимы для синтеза веществ, входящих в состав клеточных структур.

Метаболизм прокариот, как энергетический, так и конструктивный, отличается чрезвычайным разнообразием. Это является результатом того, что бактерии в качестве источников энергии и углерода могут использовать самый широкий набор органических и неорганических соединений. Такая способность обусловлена различиями в наборе клеточных периферических ферментов, или экзоферментов, относящихся к классу гидролаз, которые выделяются наружу и разрушают макромолекулы исходных субстратов до веществ с низкой молекулярной массой. Образующиеся в результате действия таких ферментов вещества поступают в клетку бактерий и подвергаются действию ферментов промежуточного метаболизма.

Общая характеристика энергетического метаболизма. По отношению к энергетическим источникам все микроорганизмы подразделяются на две группы: хемотрофные и фототрофные. Синтез молекул АТФ из АДФ и фосфатов может происходить двумя способами:

Фосфорилированием в дыхательной или фотосинтетической электронтранспортной цепи. Этот процесс у прокариот связан с мембранами или их производными, поэтому его называют мембранным фосфорилированием. Синтез АТФ в данном случае происходит при участии АТФ-синтазы:

Фосфорилированием на уровне субстрата. При этом фосфатная группа переносится на АДФ от вещества (субстрата), более богатого энергией, чем АТФ: Такой способ синтеза АТФ получил название субстратного фосфорилирования В клетке реакции субстратного фосфорилирования не связаны с мембранными структурами и катализируются растворимыми ферментами промежуточного метаболизма.

Все окислитсльно-восстановитсльныс реакции энергетического метаболизма у хемотрофных микроорганизмов можно разделить на три типа:

Аэробное дыхание, или аэробное окисление;

Анаэробное дыхание;

Брожение.

Основной процесс энергетического метаболизма многих прокариот аэробное дыхание , при котором донором водорода или электронов являются органические (реже неорганические) вещества, а конечным акцептором - молекулярный кислород. Основное количество энергии при аэробном дыхании образуется в электрон-транспортной цепи, т.е. в результате мембранного фосфорилирования. Окислительному фосфорилированию предшествует гликолиз и цикл трикарбоновых кислот (цикл Кребса)

Анаэробное дыхание – цепь анаэробных окислителыю-восстановительных реакций, которые сводятся к окислению органического или неорганического субстрата с использованием в качестве конечного акцептора электронов не молекулярного кислорода, а других неорганических веществ (нитрата, нитрита, сульфата, сульфита, СО: и др.), а также органических веществ (фумарата и др.). Молекулы АТФ в процессе анаэробного дыхания образуются в основном в электрон-транспортной цепи, т.е. в результате реакций мембранного фосфорилирования, но в меньшем количестве, чем при аэробном дыхании.

При анаэробном дыхании конечным акцептором электронов в электрон-транспортной цепи являются неорганические или органические соединения. Например, если конечным акцептором электронов является SO 4 2- , то процесс называют сульфатным дыханием , а бактерии – сульфатвосстанавливающими или сульфитредуцирующими . Если конечным акцептором электронов служит NO 3 - или NО 2 - , то процесс называется нитратным дыханием или денитрификацией, а бактерии, осуществляющие этот процесс, – денитрифицирующими . В качестве конечного акцептора электронов может выступать СО 2 , процесс соответственно называют карбонатным дыханием , а бактерии – метаногенными (метанобразующими) . Одним из немногих примеров, когда конечным акцептором служит органическое вещество, является фумаратное дыхание.

Бактерии, способные к анаэробному дыханию, имеют укороченные электронтранспортные, или дыхательные, цепи, т.е. они не содержат всех переносчиков, характерных для дыхательных цепей, функционирующих в аэробных условиях. Кроме того, в дыхательных цепях анаэробов цитохромоксидаза заменена соответствующими редуктазами. У строгих анаэробов не функционирует цикл Кребса или же он разорван и выполняет только биосинтетические, но не энергетические функции. Основное количество молекул АТФ при анаэробном дыхании синтезируется в процессе мембранного фосфорилирования.

Брожение – совокупность анаэробных окислительно-восстановительных реакций, при которых органические соединения служат как донорами, так и акцепторами электронов. Как правило, доноры и акцепторы электронов образуются из одного и того же субстрата, подвергающегося брожению (например, из углевода). Сбраживанию могут подвергаться различные субстраты, но лучше других используются углеводы. АТФ при брожении синтезируется в результате реакций субстратного фосфорилирования.

По своей биологической сути брожение – это способ получения энергии, при котором АТФ образуется в результате анаэробного окисления органических субстратов в реакциях субстратного фосфорилирования. При брожении продукты расщепления одного органического субстрата могут одновременно служить и донорами, и акцепторами электронов.

При сбраживании углеводов и ряда других веществ образуются (по отдельности или в смеси) такие продукты, как этанол, молочная, муравьиная, янтарная кислоты, ацетон, СО 2 , Н 2 и др. В зависимости от того, какие продукты преобладают или являются особенно характерными, различают спиртовое, молочнокислое, муравьинокислое, маслянокислое, пропионовокислое и другие типы брожения.

Наиболее выгодным типом окислительно-восстановительных реакций у бактерий, в результате которых генерируется наибольший запас энергии в виде молекул АТФ, является аэробное дыхание. Наименее выгодным типом энергодающих реакций является брожение, сопровождающееся минимальным выходом АТФ.

Метаболизм (обмен веществ) микроорганизмов

Питание микробов (конструктивный метаболизм).

Как у всего живого, метаболизм микроорганизмов состоит из двух взаимосвязанных, одновременно протекающих, но противоположных процессов - анаболизма, или конструктивного метаболизма, и катабо-лизма, или энергетического метаболизма.

Обмен веществ у микроорганизмов имеет свои особенности.

1) Быстрота и интенсивность обменных процессов. За сутки мик-робная клетка может переработать такое количество питательных ве-ществ, которое превышает ее собственный вес в 30-40 раз.

2) Выраженная приспособляемость к изменяющимся условиям внешней среды.

3) Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.

Для роста и жизнедеятельности микроорганизмов обязательно на-личие в среде обитания питательных материалов для построения ком-понентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, на-трия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микро-бов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.

В зависимости от способности усваивать органические или не-органические источники углерода и азота микроорганизмы делятся

на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают уг-лерод из углекислоты (СО 2) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспорти-руются внутрь клетки.

Проникновение питательных веществ в клетку происходит с по-мощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диф-фузии по градиенту концентрации, то есть вследствие того, что кон-центрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту кон-центрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внеш-ней стороне цитоплазматической мембраны и отдает его на внутрен-ней стороне в неизмененном виде. Затем свободный переносчик пере-мещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышаю-щих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов - это четвертый механизм передачи ве-ществ. Это активный перенос химически измененных молекул, с учас-тием пермеаз. Например, такое простое вещество, как глюкоза, пере-носится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пас-сивной диффузии или путем облегченной диффузии с участием пермеаз.

Ферменты

Ферменты - катализаторы биологических процессов. Характер-ным свойством ферментов является их специфичность. Каждый фер-мент участвует только в определенной реакции с определенным хи-мическим соединением.

Ферменты, которые выделяются бактериальной клеткой в окру-жающую среду и осуществляют внеклеточное переваривание, называ-ются экзоферментами. К экзоферментам относится также беталактамаза, которая разрушает пенициллин и другие бета-лактамные анти-биотики, защищая бактерии от их действия.

Эндоферменты участвуют в процессах метаболизма внутри клетки.

Для бактерий, в силу их малых размеров, характерна высокая сте-пень саморегуляции продукции ферментов. В этом отношении фермен-ты можно разделить на конститутивные и адаптивные. Конститутив-ные ферменты продуцируются клеткой постоянно. Адаптивные фер-менты, в свою очередь, подразделяются на индуцируемые и ингибируемые. Продукция индуцируемых ферментов происходит в присутствии субстрата. Например, ферменты, расщепляющие лактозу, образуются в клетке в только присутствии этого углевода. Продукция ингибируемых ферментов, напротив, подавляется присутствием в среде конеч-ного субстрата в достаточно большой концентрации (например, трип-тофана).

Многие патогенные бактерии, кроме ферментов обмена, выделя-ют ферменты, являющиеся факторами вирулентности. Например, та-кие ферменты, как гиалуронидаза, коллагеназа, дезоксирибонуклеаза, нейраминидаза способствуют проникновению и распространению патогенного микроба в организме.

Способность бактерий продуцировать определенные ферменты -признак настолько постоянный, что его используют для идентифика-ции, то есть определения вида бактерий. Определяют сахаролитические свойства (ферментацию углеводов) и протеолитические свойства (фер-ментацию белков и пептона).

Для микробов характерна высокая ферментативная активность. Это используется в промышленности. В медицине находят применение такие лечебные средства, как стрептокиназа (фибринолизин стреп-тококков), террилитин (протеаза Aspergillus terricola). Ферменты мик-робного происхождения - липазы и протеазы, входящие в состав мою-щих средств и стиральных порошков, расщепляют белковые и жировые загрязнения до воднорастворимых веществ, которые легко смываются водой.

Биологическое окисление (энергетический метаболизм)

Процесс биологического окисления дает энергию, необходимую для жизни клетки. Сущность процесса заключается в последователь-ном окислении субстратов с постепенным освобождением энергии. Энергия запасается в молекулах АТФ.

Окислению подвергаются углеводы, спирты, органические кис-лоты, жиры и другие вещества. Но для большинства микроорганизмов источником энергии служат гексозы, в частности, глюкоза.

У микроорганизмов существует два типа биологического окис-ления: аэробный и анаэробный. При аэробном типе участвует кисло-род, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называет-ся брожением.

Начальный этап анаэробного расщепления глюкозы с образова-нием пировиноградной кислоты (ПВК) происходит одинаково. Эта

кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.

При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с об-разованием воды. Конечные продукты аэробного окисления глюкозы - диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ.

При анаэробном типе биологического окисления энергия образу-ется в результате брожений. При спиртовом брожении ПВК превра-щается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения - масляная кислота. При процессах брожения на одну моле-кулу глюкозы образуется только 2 молекулы АТФ.

Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он так-же установил явление, которое впоследствии было названо "эффектом Пастера": прекращение процесса брожения при широком доступе кис-лорода.

Анаэробиоз существует только среди прокариотов. Все микро-организмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободно-го кислорода. К ним можно отнести микобактерии туберкулеза, хо-лерный вибрион, чудесную палочку. ,

Облигатные или строгие анаэробы получают энергию при от-сутствии доступа кислорода. Они имеют неполный набор окислитель-но-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов - СО 2 и Н 2 О. Более того, в присутствии свобод-ного кислорода образуются токсические соединения: перекись водо-рода Н 2 О 2 и свободный перекисный радикал кислорода О 2 . Аэробы при этом не погибают, так как продуцируют ферменты, разрушающие эти токсические соединения (супероксиддисмутазу и каталазу). Спорообразующие анаэробы в этих условиях прекращают размножение и превращаются в споры. Неспорообразующие анаэробы погибают даже при кратковременном контакте с кислородом.

К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам - бактероиды, пептобактерии, бифидумбактерии.

Большинство патогенных бактерий - факультативные (условные) анаэробы, например, энтеробактерии. Они имеют полный набор фер-ментов и при широком доступе кислорода окисляют глюкозу до ко-нечных продуктов; при низком содержании кислорода они вызывают брожение.

Микроаэрофилы размножаются в присутствии небольших коли-честв кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.

Рост и размножение микроорганизмов

Термином "рост" обозначают увеличение размеров отдельной осо-би, а "размножение" - увеличение числа особей в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамположительных бактерий из клеточной стен-ки и цитоплазматической мембраны образуется перегородка, враста-ющая внутрь. У грамотрицательных бактерий образуется перетяжка, и затем происходит разделение клетки на две особи.

Делению клеток предшествует репликация бактериальной хромо-сомы по полуконсервативному типу. При этом двуспиральная цепь ДНК раскручивается, каждая нить достраивается комплиментарной нитью и в результате каждая дочерняя клетка получает одну мате-ринскую нить и одну вновь образованную.

Быстрота размножения разных видов бактерий различна. Боль-шинство бактерий делятся каждые 15-30 минут. Микобактерии тубер-кулеза делятся медленно - одно деление за 18 часов, спирохеты - одно деление за 10 часов.

Если посеять бактерии в жидкую питательную среду определен-ного объема и затем каждый час брать пробу и определять количество живых бактерий в такой замкнутой среде и составить график, на кото-ром по оси абсцисс откладывать время в часах, а по оси ординат лога-рифм количества живых бактерий, то получим кривую роста бактерий. Рост бактерий подразделяют на несколько фаз (рис. 5):

1) латентная фаза (лаг-фаза) - бактерии адаптируются к пита-тельной среде, количество их не увеличивается;

2) фаза логарифмического ро-ста - количество бактерий увели-чивается в геометрической про-грессии;

3) фаза стационарного роста, во время которой число вновь об-разованных бактерий уравнивает-ся числом погибших, и количество живых бактерий остается постоян-ным, достигая максимального уровня. Это М-концентрация - величина, характерная для каждого вида бактерий;

4) фаза отмирания, когда число отмирающих клеток начинает пре-обладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.

Культура бактерий в такой замкнутой несменяющейся среде на-зывается периодической. Если же в засеянный объем непрерывно подают свежую питательную среду и удаляют такое же количество жидкости, то такую культуру называют непрерывной. Количество живых бактерий в такой культуре будет постоянно в М-концентрации. Непрерывное куль-тивирование применяют в микробиологической промышленности.

Образование микробами пигментов, ароматических веществ. Светящиеся микроорганизмы

Некоторые виды микробов вырабатывают красящие вещества -пигменты. Если пигмент растворим в воде, то окрашенными предс-тавляются и колонии микробов, и питательная среда. Например, си-ний пигмент, выделяемый синегнойной палочкой (Pseudomonas aeruginosa), окрашивает среду в синий цвет. Пигменты, растворимые в орга-нических растворителях, но нерастворимые в воде, не окрашивают питательную среду. Такой пигмент красного цвета, так называемый продигиозан, растворимый в спирте, выделяет чудесная палочка (Serratia marcescens). К этой же группе относятся пигменты желтого, оранжевого, красного цвета, характерные для кокковой воздушной микрофлоры. У некоторых видов микробов пигменты настолько проч-но связаны с протоплазмой клетки, что не растворяются ни в воде, ни в органических растворителях. Среди патогенных бактерий такие пиг-менты золотистого, палевого, лимонно-желтого цвета образуют ста-филококки.

Цвет пигмента используется для определения вида бактерий.

Некоторые микроорганизмы в процессе метаболизма вырабатыва-ют ароматические вещества. Например, для синегнойной палочки ха-рактерен запах жасмина. Характерный запах сыров, сливочного мас-ла, особый "букет" вина объясняется жизнедеятельностью микробов, которые используются для производства этих продуктов.

Свечение (люминесценция) микробов происходит в результате ос-вобождения энергии при биологическом окислении субстрата. Свечение бывает тем интенсивнее, чем сильнее приток кислорода Светящиеся бактерии были названы фотобактериями. Они придают свечение че-шуе рыб в море, грибам, гниющим деревьям, пищевым продуктам, на поверхности которых размножаются. Свечение может наблюдаться при низких температурах, например, в холодильнике. Патогенных для че-ловека среди фотогенных бактерий не установлено.

Свечение пищевых продуктов, вызванное бактериями, не приво-дит к их порче, и даже может свидетельствовать о том. что в этих про-дуктах не происходит гниения, поскольку оно прекращается при разви-тии гнилостных микроорганизмов.

ГЛАВА 5.

МЕТОДЫ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ. ИЗУЧЕНИЕ КУЛЬТУРАЛЬНЫХ И БИОХИМИЧЕСКИХ

СВОЙСТВ

Культивирование, то есть выращивание микроорганизмов в ла-боратории, применяется для изучения их свойств и для получения био-массы. Бактерии, грибы, актиномицеты, спирохеты и некоторые про-стейшие культивируются на питательных средах. Хламидии, риккетсии, вирусы и некоторые простейшие способны размножаться только в орга-низме животного или в живых клетках.

Культуральные свойства данного вида микроорганизмов - это: 1) условия, необходимые для размножения, и 2) характер роста на пита-тельных средах. Культуральные свойства - это одна из характеристик, которые учитываются при идентификации (определения вида) микро-организмов.

Питательные среды

Питательные среды должны соответствовать определенным тре-бованиям. Они должны содержать все питательные вещества, необхо-димые для размножения данного вида микробов. Одни патогенные мик-роорганизмы растут на простых питательных средах, другие для свое-го размножения нуждаются в добавлении крови, сыворотки крови, ви-таминов.

В питательных средах должны быть созданы определенные условия путем добавления хлорида натрия или буферных растворов. Для боль-шинства бактерий благоприятной является питательная среда, со-держащая 0,5% хлорида натрия. Реакция питательной среды, благоп-риятная для большей части патогенных бактерий - слабощелочная, что соответствует рН=7,2-7,4. Холерный вибрион растет при рН=7,8-8,5, гри-бы - при рН=5-5,5. Питательные среды должны быть влажными, то есть содержать достаточное количество воды, быть по возможности прозрач-ными и стерильными, то есть до посева не содержать микробов.

По составу и происхождению питательные среды бывают естест-венные, искусственные и синтетические. Естественные питательные среды - это натуральный продукт, например, картофель, другие ово-щи. Искусственные питательные среды готовят по определенной про-писи из продуктов с добавлением органических и неорганических со-единений. Синтетические среды содержат определенные химические соединения в известных концентрациях.

По консистенции питательные среды бывают жидкие, полужид-кие, плотные. В качестве уплотнителя обычно применяют агар-агар -полисахарид, выделенный из морских водорослей. Агар-агар не используется микроорганизмами в качестве питательного вещества, образует в воде гель, плавящийся при 100°С и застывающий при 45°С.

Для получения плотной питательной среды агар-агар добавляют в кон-центрации 1,5-2%, для полужидкой - 0,5%.

По целевому назначению питательные среды могут быть разде-лены на обычные (простые), специальные, элективные, дифференци-ально-диагностические.

Обычные (простые) питательные среды применяют для культиви-рования большинства микроорганизмов, это мясопептонный бульон (МПБ), мясопептонный агар (МПА).

Специальные питательные среды применяют для культивирования микроорганизмов, которые не растут на простых средах. Например, кровяной агар и сахарный бульон для стрептококка, сывороточный агар для менингококка и гонококка.

Элективные питательные среды используют для выделения одного какого-либо вида из смеси различных бактерий. Данный вид бактерий растет на этой среде быстрее и лучше других, опережая их в своем росте; рост других бактерий задерживается на этой среде. Например, свернутая сыворотка для палочки дифтерии, щелочная пептонная вода для холерного вибриона, желчный бульон для палочки брюшного тифа, солевые среды для стафилококка.

Дифференциально-диагностические питательные среды применя-ются для отличия одних видов бактерий от других по их фермента-тивной активности (см. соответствующий раздел).

Культивирование и выделение чистых культур аэробных бактерий

Для культивирования микроорганизмов необходимы определенные условия: температура, аэробные или анаэробные условия.

Температура должна быть оптимальной для данного вида. Боль-шинство патогенных бактерий размножаются при 37°С. Однако для некоторых видов оптимальной является более низкая температура, что связано с особенностями их экологии. Так, для палочки чумы, ес-тественным местом обитания которой являются грызуны в период зимней спячки, оптимум температуры составляет 28°С, как и для лептоспир, для палочки ботулизма - 28°С-35°С.

Кроме оптимальной температуры, для культивирования микроор-ганизмов, в зависимости от вида, необходима аэробность или анаэ-робность среды.

Для того, чтобы изучить морфологию, Культуральные, биохими-ческие и другие свойства микробов, необходимо получить чистую куль-туру. Обычно культурой микробов называют скопление их на пи-тательной среде в виде помутнения, придонного (пристеночного) рос-та или пленки на поверхности жидкой среды или колоний на плотной среде. Отдельная колония образуется из одной микробной клетки. Чи-стая культура - это культура микробов одного вида, полученная из од-ной колонии. В лабораториях для различных исследований применя-ют определенные известные штаммы микробов. Штамм - это чистая культура микробов, полученная из определенного источника, в опре-деленное время, обладающая известными свойствами. Как правило, штаммы микробов обозначают определенным номером. Например, штамм Staphylococcus aureus 209P применяется для определения актив-ности пенициллина.

Выделение чистых культур аэробов занимает, как правило, три дня и производится по следующей схеме:

1-й день - микроскопия мазка из исследуемого материала, ок-рашенного (обычно по Граму) - для предварительного ознакомления с микрофлорой, что может быть полезным в выборе питательной среды для посева. Затем посев материала на поверхность застывшего пита-тельного агара для получения изолированных колоний. Рассев можно произвести по методу Дригальского на три чашки Петри с питательной средой. Каплю материала наносят на первую чашку и распределяют шпателем по всей чашке. Затем этим же шпателем распределяют остав-шуюся на нем культуру на второй чашке и таким же образом - на тре-тьей. Наибольшее количество колоний вырастет на первой чашке, наи-меньшее - на третьей. В зависимости от того, сколько было микробных клеток в исследуемом материале, на одной из чашек вырастут изоли-рованные колонии.

Такого же результата можно достигнуть, произведя рассев на од-ной чашке. Для этого делят чашку на четыре сектора. Исследуемый материал засевают бактериологической петлей штрихами на первом секторе, затем, прокалив и остудив петлю, распределяют посев из пер-вого сектора во второй и таким же образом последовательно в тре-тий и четвертый сектор. Из отдельных микробных клеток после су-точного инкубирования в термостате образуются изолированные колонии.

2-й день - изучение колоний, выросших на чашках, описание их. Колонии могут быть прозрачными, полупрозрачными или непроз-рачными, они имеют различные размеры, округлые правильные или неправильные очертания, выпуклую или плоскую форму, гладкую или шероховатую поверхность, ровные или волнистые, изрезанные края. Они могут быть бесцветными или иметь белый, золотистый, красный, желтый цвет. На основании изучения этих характеристик выросшие колонии разделяются на группы. Затем из исследуемой группы отби-рают изолированную колонию, готовят мазок для микроскопического исследования с целью проверки однородности микробов в колонии. Из этой же колонии производят посев в пробирку со скошенным пита-тельным агаром.

3-й день - проверка чистоты культуры, выросшей на скошенном агаре путем микроскопии мазка. При однородности исследуемых бак-терий выделение чистой культуры можно считать законченным.

Для идентификации выделенных бактерий изучаются культураль-ные признаки, то есть характер роста на жидких и плотных пита-тельных средах. Например, стрептококки на сахарном бульоне образуют придонный и пристеночный осадок, на кровяном агаре - мелкие, точечные колонии; холерный вибрион образует пленку на поверхности щелочной пептонной воды, а на щелочном агаре - прозрачные коло-нии; палочка чумы на питательном агаре образует колонии в виде «кру-жевных платочков» с плотным центром и тонкими волнистыми края-ми, а в жидкой питательной среде - пленку на поверхности, а затем -нити, отходящие от нее в виде «сталактитов».

Документ

В качестве первого частой Глава ... сельскохозяйственной микробиологии (С.–Петербург) и чешскими микробиологами Общая

  • Глава 4 прорывные технологии в системах жизнеобеспечения содержание главы 4 1 жизнеобеспечение человека

    Литература

    В качестве первого примера рассмотрим систему... частой причиной желудочных расстройств. Глава ... сельскохозяйственной микробиологии (С.–Петербург) и чешскими микробиологами . ... М: Энергоатомиздат, 1992 Ацюковский В.А. Общая эфиродинамика. - М: Энергоатомиздат, ...

  • Наши книги отличают тщательность редакционной подготовки высокое качество полиграфического исполнения и доступность читателю

    Учебники

    Вузов. Учебник состоит из семи частей . Часть первая - «Общая микробиология» - содержит сведения о морфологии и физиологии бактерий... здравоохранения Российской Федерации в 1997 году. В первой главе содержится пропедевтический курс и диететика; во...

  • Энергетический метаболизм микроорганизмов

    2. Конструктивный метаболизм

    Конструктивный метаболизм направлен на синтез четырех основных типов биополимеров: белков, нуклеиновых кислот, полисахаридов и липидов.

    Ниже показана обобщенная условная схема биосинтеза сложных органических соединений, где выделены следующие основные этапы: образование из простейших неорганических веществ органических предшественников (I), из которых на следующем этапе синтезируются «строительные блоки» (II). В дальнейшем строительные блоки, связываясь друг с другом ковалентными связями, образуют биополимеры (III): Приложения (рис. № 3)

    Представленная схема биосинтетических процессов не отражает всей сложности превращения низкомолекулярных предшественников в строительные блоки с большой молекулярной массой. На самом деле синтез протекает как серия последовательных реакций с образованием разнообразных промежуточных продуктов метаболизма. Кроме того, уровни развития биосинтетических способностей микроорганизмов очень различны. У одних микробов конструктивный метаболизм включает все показанные на схеме этапы, у других ограничен вторым и третьим или только третьим этапом. Именно поэтому микроорганизмы резко отличаются друг от друга по своим пищевым потребностям. Однако элементный состав пищи одинаков для всех живых организмов и должен включать все компоненты, входящие в клеточное вещество: углерод, азот, водород, кислород и др.

    В зависимости от используемых в конструктивном обмене источников углерода микроорганизмы делятся на две группы: автотрофы и гетеротрофы.

    Автотрофы (от греч. «autos» -- сам, «trophe» -- пища) в качестве единственного источника углерода используют диоксид углерода и из этого простого неорганического соединения-предшественника синтезируют все необходимые биополимеры. Способность к биосинтезу у автотрофов самая высокая.

    Гетеротрофы (от греч. «heteros» -- другой) нуждаются в органических источниках углерода. Их пищевые потребности чрезвычайно разнообразны. Одни из них питаются продуктами жизнедеятельности других организмов или используют отмершие растительные и животные ткани. Такие микроорганизмы называются сапрофитами (от греч. «sapros» -- гнилой и «phyton» -- растение). Число органических соединений, используемых ими в качестве источников углерода, чрезвычайно велико -- это углеводы, спирты, органические кислоты, аминокислоты и т. д. Практически любое природное соединение может быть использовано тем или иным видом микроорганизмов в качестве источника питания или энергии.

    Для синтеза клеточных белков микроорганизмам необходим азот. По отношению к источникам азотного питания среди микроорганизмов можно выделить автоаминотрофов и гетероаминотрофов. Первые способны использовать азот неорганический (аммонийный, нитратный, молекулярный) или простейшие формы органического (мочевина) и из этих соединений строить разнообразные белки своего тела. При этом все формы азота сначала переводятся в аммонийную форму. Эта наиболее восстановленная форма азота легко трансформируется в аминогруппу. Гетероаминотрофы нуждаются в органических формах азота - белках и аминокислотах. Некоторым из них требуется полный набор аминокислот, другие создают необходимые белковые соединения из одной - двух аминокислот путем их преобразования.

    Многие гетеротрофные по отношению к углероду микроорганизмы являются автоаминотрофами. К ним относятся я бактерии, участвующие в очистке сточных вод.

    Потребность в кислороде и водороде для конструктивного обмена микроорганизмы удовлетворяют за счет воды и органических питательных веществ. Источниками зольных элементов (P, S, K, Mg, Fe) служат соответствующие минеральные соли. Потребность в этих элементах невелика, но присутствие в среде обязательно. Помимо того, для нормальной жизнедеятельности микробов необходимы микроэлементы - Zn, Co, Cu, Ni и др. Часть их входит в состав естественного питания микробов, часть усваивается ими из минеральных солей.

    Способы получения пищи, т. е. способы питания микроорганизмов, отличаются большим разнообразием. Различают три основных способа питания: голофитное, сапрозойное, голозойное.

    Голофитное питание (от греч. «голо» - целиком, «фит» - растение) совершается по типу фотосинтеза растений. Такое питание присуще только автотрофам. Среди микроорганизмов этот способ свойствен водорослям, окрашенным формам жгутиковых и некоторым бактериям.

    Гетеротрофные микроорганизмы питаются либо твердыми пищевыми частицами, либо поглощают растворенные органические вещества.

    Голозойное питания предопределяет развитие у микроорганизмов специальных органоидов для переваривания пищи, а у некоторых - и для ее захвата. Например, неокрашенные жгутиковые и ресничные инфузории имеют ротовое отверстие, к которому пища подгоняется соответственно жгутиками или ресничками. Наиболее высокоорганизованные инфузории образуют околоротовыми ресничками ток воды в виде воронки, направленной узким концом в рот. Пищевые частицы осаждаются на дне воронки и заглатываются инфузорией. Такие инфузории называют седиментаторами. Амебы питаются путем фагоцитоза.

    Микроорганизмы с голозойным способом питания для конструктивного метаболизма используют главным образом цитоплазму других организмов - бактерий, водорослей и т. д. и имеют специальные органоиды для пищеварения. Пищеварительный процесс у простейших осуществляется в пищеварительных вакуолях.

    Переваривание заключается в гидролитическом расщеплении сложных органических веществ до более простых соединений. При этом углеводы гидролизуются до простых сахаров, белки - до аминокислот, а при гидролизе липидов образуются глицерин и высшие жирные кислоты. Продукты пищеварения всасываются в цитоплазму и подвергаются дальнейшему преобразованию.

    Бактерии, микроскопические грибы, дрожжи не имеют специальных органоидов для захвата пищи, и она поступает в клетку через всю поверхность. Такой способ питания называется сапрозойным.

    Чтобы проникнуть в клетку, питательные вещества должны находится в растворенном состоянии и иметь соответствующий размер молекул. Для многих высокомолекулярных соединений цитоплазматическая мембрана непроницаема, а некоторые из них не могут проникнуть даже через клеточную оболочку. Однако это не означает, что высокомолекулярные соединения не используются микроорганизмами как питательные вещества. Микроорганизмы синтезируют внеклеточные пищеварительные ферменты, гидролизующие сложные соединения. Таким образом, процесс пищеварения, протекающий у простейших в вакуолях, у бактерий осуществляется вне клетки (Приложения рис. 4).

    Размер молекул - не единственный фактор, обусловливающий проникновение питательных веществ в клетку.

    Цитоплазматическая мембрана способна пропускать одни соединения и задерживать другие.

    Известно несколько механизмов переноса веществ через мембрану клетки: простая диффузия, облегченная диффузия и Активный перенос (Приложения рис. 5).

    Простая диффузия - это проникновение молекул вещества в клетку без помощи каких-либо переносчиков.

    В насыщении клетки питательными веществами простая диффузия большого значения не имеет. Однако именно таким путем в клетку поступают молекулы воды. Немаловажную роль в этом процессе играет осмос - диффузия молекул растворителя через полупроницаемую перепонку в направлении более концентрированного раствора.

    Роль полупроницаемой перепонки в клетке выполняет цитоплазматическая мембрана. В клеточном соке растворено огромное количество молекул разнообразных веществ, поэтому клетки микроорганизмов обладают довольно высоким осмотическим давлением. Величина его у многих микробов достигает 0,5--0,8 МПа. В окружающей среде осмотическое давление обычно ниже. Это вызывает приток воды внутрь клетки и создает в ней определенное напряжение называемое тургором.

    При облегченной диффузии растворенные вещества поступают в клетку с участием специальных ферментов-переносчиков, носящих название пермеаз. Они как бы захватывают молекулы растворенных веществ и переносят их к внутренней поверхности мембраны.

    Простая и облегченная диффузия представляет собой варианты пассивного транспорта веществ. Движущей силой переноса веществ в клетку в этом случае служит градиент концентраций по обе стороны мембраны. Однако большинство веществ поступает в клетку против градиента концентрации. В этом случае на такой перенос затрачивается энергия и перенос называется активным. Активный перенос протекает с участием специфических белков, сопряжен с энергетическим обменом клетки и позволяет накапливать в клетке пительные вещества в концентрации во много раз больше, чем концентрация их во внешней среде. Активный перенос - основной механизм поступления питательных веществ в клетки с сапрозойным питанием.

    Рассмотрим первую группу генов. Этанол окисляется в два этапа, и на этих двух этапах работают два ключевых фермента. Сначала под действием фермента алкогольдегидрогеназы этанол превращается в ацетальдегид...

    Генетика и биохимия алкоголизма

    Катаболизм этилового спирта осуществляется главным образом в печени. Здесь окисляется от 75% до 98% введённого в организм этанола. Окисление алкоголя - сложный биохимический процесс...

    Гидрофильные гормоны, их строение и биологические функции

    Биосинтез. В отличие от стероидов пептидные и белковые гормоны являются первичными продуктами биосинтеза. Соответствующая информация считывается с ДНК (DNA) на стадии транскрипции...

    Изучение сезонного биоритма бациллярно-кокковой трансформации бактерии Helicobacter pylori

    Бактерия Helicobacter pylori весьма успешно приспособилась к жизни в экстремальных условиях человеческого желудка. Она грамотрицательная, что уже подразумевает мощную непроницаемую клеточную стенку. Она способна жить в микроаэрофильных условиях...

    Морфология и метаболизм дрожжей

    Регуляция первичных метаболических процессов

    Живая клетка - это высокоорганизованная система. В ней имеются различные структуры, а также ферменты, способные их разрушить. Содержатся в ней и крупные макромолекулы...

    Роль пептидов в функционировании нервной системы

    Как было отмечено выше, известны три белковые молекулы, включающие в свою структуру последовательности энкефалинов: проопиомеланокортин, препроэнкефалин А (проэнкефалин), препроэнкефалин В (продинорфин). Последовательности...

    Более 2/3 аминоазота аминокислот приходится на долю глутамата и его производных; эти аминокислоты доминируют в количественном отношении в мозге всех изученных видов животных. В спинном мозге наблюдается аналогичная картина...

    Свободные аминокислоты нервной системы

    Ароматические аминокислоты - триптофан, фенилаланин и тирозин - важны как предшественники 5-гидрокситрилтамина и катехоламинов, играющих чрезвычайно важную роль в нейрональных процессах...

    Структура и транспорт андрогенов

    В органах-мишенях существуют отдельные, специфические циторецепторы половых гормонов. Эти рецепторы гормонов и являются, очевидно, тканевым компонентом каждой эндокринной функции - в том числе и гонадальной...

    Физиология и биохимия компонентов растений

    Цикл Хетча и Слэка обнаружен также у растений-суккулентов. Но если у С4-растений кооперация достигнута за счет пространственного разделения двух циклов (включение СО2 в органические кислоты в мезофилле, восстановление в обкладке)...

    Все указанные в табл. 1 фотосинтезирующие микроорганизмы приспособлены к использованию света видимого (длинна волны 400--700 нм) и ближней инфракрасной части спектра (700--1100 нм)...

    Энергетический метаболизм микроорганизмов

    Из трех путей образования АТФ субстратное фосфорилиронание наиболее простой. Такой тип энергетического метаболизма характерен для многих бактерий и дрожжей, осуществляющих различные виды брожения...

    Энергетический метаболизм микроорганизмов

    Большинство гетеротрофных организмов получают энергию в процессе дыхания - биологического окисления сложных органических субстратов, являющихся донорами водорода. Водород от окисляемого вещества поступает в дыхательную цепь ферментов...

    Энергетический метаболизм микроорганизмов

    Окисление восстановленных минеральных соединений азота, серы, железа служит источником энергии для хемолитотрофных микроорганизмов...