ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Угол между скрещивающимися прямыми – определение, примеры нахождения. Признак скрещивающихся прямых Скрещивающиеся прямые школьное понятие


В этой статье сначала дадим определение угла между скрещивающимися прямыми и приведем графическую иллюстрацию. Далее ответим на вопрос: «Как найти угол между скрещивающимися прямыми, если известны координаты направляющих векторов этих прямых в прямоугольной системе координат»? В заключении попрактикуемся в нахождении угла между скрещивающимися прямыми при решении примеров и задач.

Навигация по странице.

Угол между скрещивающимися прямыми - определение.

К определению угла между скрещивающимися прямыми будем подходить постепенно.

Сначала напомним определение скрещивающихся прямых: две прямые в трехмерном пространстве называются скрещивающимися , если они не лежат в одной плоскости. Из этого определения следует, что скрещивающиеся прямые не пересекаются, не параллельны, и, тем более, не совпадают, иначе они обе лежали бы в некоторой плоскости.

Приведем еще вспомогательные рассуждения.

Пусть в трехмерном пространстве заданы две скрещивающиеся прямые a и b . Построим прямые a 1 и b 1 так, чтобы они были параллельны скрещивающимся прямым a и b соответственно и проходили через некоторую точку пространства M 1 . Таким образом, мы получим две пересекающиеся прямые a 1 и b 1 . Пусть угол между пересекающимися прямыми a 1 и b 1 равен углу . Теперь построим прямые a 2 и b 2 , параллельные скрещивающимся прямым a и b соответственно, проходящие через точку М 2 , отличную от точки М 1 . Угол между пересекающимися прямыми a 2 и b 2 также будет равен углу . Это утверждение справедливо, так как прямые a 1 и b 1 совпадут с прямыми a 2 и b 2 соответственно, если выполнить параллельный перенос, при котором точка М 1 перейдет в точку М 2 . Таким образом, мера угла между двумя пересекающимися в точке М прямыми, соответственно параллельными заданным скрещивающимся прямым, не зависит от выбора точки М .

Теперь мы готовы к тому, чтобы дать определение угла между скрещивающимися прямыми.

Определение.

Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Из определения следует, что угол между скрещивающимися прямыми также не будет зависеть от выбора точки M . Поэтому в качестве точки М можно взять любую точку, принадлежащую одной из скрещивающихся прямых.

Приведем иллюстрацию определения угла между скрещивающимися прямыми.

Нахождение угла между скрещивающимися прямыми.

Так как угол между скрещивающимися прямыми определяется через угол между пересекающимися прямым, то нахождение угла между скрещивающимися прямыми сводится к нахождению угла между соответствующими пересекающимися прямыми в трехмерном пространстве.

Несомненно, для нахождения угла между скрещивающимися прямыми подходят методы, изучаемые на уроках геометрии в средней школе. То есть, выполнив необходимые построения, можно связать искомый угол с каким-либо известным из условия углом, основываясь на равенстве или подобии фигур, в некоторых случаях поможет теорема косинусов , а иногда к результату приводит определение синуса, косинуса и тангенса угла прямоугольного треугольника.

Однако очень удобно решать задачу нахождения угла между скрещивающимися прямыми методом координат. Именно его и рассмотрим.

Пусть в трехмерном пространстве введена Oxyz (правда, во многих задачах ее приходится вводить самостоятельно).

Поставим перед собой задачу: найти угол между скрещивающимися прямыми a и b , которым соответствуют в прямоугольной системе координат Oxyz некоторые уравнения прямой в пространстве .

Решим ее.

Возьмем произвольную точку трехмерного пространства М и будем считать, что через нее проходят прямые a 1 и b 1 , параллельные скрещивающимся прямым a и b соответственно. Тогда искомый угол между скрещивающимися прямыми a и b равен углу между пересекающимися прямыми a 1 и b 1 по определению.

Таким образом, нам осталось найти угол между пересекающимися прямыми a 1 и b 1 . Чтобы применить формулу для нахождения угла между двумя пересекающимися прямыми в пространстве нам нужно знать координаты направляющих векторов прямых a 1 и b 1 .

Как же мы их можем получить? А очень просто. Определение направляющего вектора прямой позволяет утверждать, что множества направляющих векторов параллельных прямых совпадают. Следовательно, в качестве направляющих векторов прямых a 1 и b 1 можно принять направляющие векторы и прямых a и b соответственно.

Итак, угол между двумя скрещивающимися прямыми a и b вычисляется по формуле
, где и - направляющие векторы прямых a и b соответственно.

Формула для нахождения косинуса угла между скрещивающимися прямыми a и b имеет вид .

Позволяет найти синус угла между скрещивающимися прямыми, если известен косинус: .

Осталось разобрать решения примеров.

Пример.

Найдите угол между скрещивающимися прямыми a и b , которые определены в прямоугольной системе координат Oxyz уравнениями и .

Решение.

Канонические уравнения прямой в пространстве позволяют сразу определить координаты направляющего вектор этой прямой – их дают числа в знаменателях дробей, то есть, . Параметрические уравнения прямой в пространстве также дают возможность сразу записать координаты направляющего вектора – они равны коэффициентам перед параметром, то есть, - направляющий вектор прямой . Таким образом, мы располагаем всеми необходимыми данными для применения формулы, по которой вычисляется угол между скрещивающимися прямыми:

Ответ:

Угол между заданными скрещивающимися прямыми равен .

Пример.

Найдите синус и косинус угла между скрещивающимися прямыми, на которых лежат ребра AD и BC пирамиды АВСD , если известны координаты ее вершин: .

Решение.

Направляющими векторами скрещивающихся прямых AD и BC являются векторы и . Вычислим их координаты как разность соответствующих координат точек конца и начала вектора:

По формуле мы можем вычислить косинус угла между указанными скрещивающимися прямыми:

Теперь вычислим синус угла между скрещивающимися прямыми:

Ответ:

В заключении рассмотрим решение задачи, в которой требуется отыскать угол между скрещивающимися прямыми, а прямоугольную систему координат приходится вводить самостоятельно.

Пример.

Дан прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1 , у которого АВ=3 , АD=2 и AA 1 =7 единиц. Точка E лежит на ребре АА 1 и делит его в отношении 5 к 2 считая от точки А . Найдите угол между скрещивающимися прямыми ВЕ и А 1 С .

Решение.

Так как ребра прямоугольного параллелепипеда при одной вершине взаимно перпендикулярны, то удобно ввести прямоугольную систему координат, и определить угол между указанными скрещивающимися прямыми методом координат через угол между направляющими векторами этих прямых.

Введем прямоугольную систему координат Oxyz следующим образом: пусть начало координат совпадает с вершиной А , ось Ox совпадает с прямой АD , ось Oy - с прямой АВ , а ось Oz – с прямой АА 1 .

Тогда точка В имеет координаты , точка Е - (при необходимости смотрите статью ), точка А 1 - , а точка С - . По координатам этих точек мы можем вычислить координаты векторов и . Имеем , .

Осталось применить формулу для нахождения угла между скрещивающимися прямыми по координатам направляющих векторов:

Ответ:

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ Большой Энциклопедический словарь

    скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. * * * СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ, прямые в пространстве, не лежащие в одной плоскости … Энциклопедический словарь

    Скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. Через С. п. можно провести параллельные плоскости, расстояние между которыми называется расстоянием между С. п. Оно равно кратчайшему расстоянию между точками С. п … Большая советская энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости. Углом между С. п. наз. любой из углов между двумя параллельными им прямыми, проходящими через произвольную точку пространства. Если а и b направляющие векторы С. п., то косинус угла между С. п … Математическая энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости … Естествознание. Энциклопедический словарь

    Параллельные прямые - Содержание 1 В Евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского … Википедия

    Ультрапаралельные прямые - Содержание 1 В евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского 3 См. также … Википедия

    РИМАНА ГЕОМЕТРИЯ - э л л и п т и ч е с к а я г е о м е т р и я, одна из неевклидовых геометрий, т. е. геометрич, теория, основанная на аксиомах, требования к рых отличны от требований аксиом евклидовой геометрии. В отличие от евклидовой геометрии в Р. г.… … Математическая энциклопедия

прямые l1 и l2 называются скрещивающимися, если они не лежат в одной плоскости. Пусть а и b - направляющие векторы этих прямых, а точки M1 и M2 принадлежат соответственно прямым и l1 и l2

Тогда векторы а, b, M1M2> не компланарны, и поэтому их смешанное произведение не равно нулю, т. е. (а, b, M1M2>) =/= 0.Верно и обратное утверждение:если (а, b, M1M2>) =/= 0, то векторы а, b, M1M2> не компланарны, и, следовательно, прямые l1 и l2 не лежат в одной плоскости, т. е. скрещиваются.Таким образом, две прямые скрещиваются тогда и только тогда, когда выполнено условие(а, b, M1M2>) =/= 0, где а и b - направляющие векторы прямых, а M1 и M2 - точки, принадлежащие соответственно данным прямым. Условие(а, b, M1M2>) = 0 является необходимым и достаточным условием того, что прямые лежат в одной плоскости. Если прямые заданы своими каноническими уравнениями

то а = (а1; а2; а3), b = (b1; b2;b3), М1 (x1; у1; z1), М2(х2; у2; z2) и условие (2) записывается следующим образом:

Расстояние между скрещивающимися прямыми

это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

26.Определение эллипса, каноническое уравнение. Вывод канонического уравнения. Свойства.

Эллипсом называется геометрическое место точек плоскости, для которых сумма расстояний до двух фокусированных точек F1 и F2 этой плоскости, называемых фокусами есть величина постоянная.При этом не исключается совпадение фокусов эллипсиса.Если вокусы совпадают то эллипсис представляет собой окружность.Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат.

Если же в правой части стоит единица со знаком минус, то получившееся уравнение:

описывает мнимый эллипс. Изобразить такой эллипс в действительной плоскости невозможно.Обозначим фокусы через F1 и F2,а расстояние между ними через 2с, а сумму расстояний от произ­вольной точки эллипса до фокусов - через 2а

Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы F1 и F2 лежали на оси Ох, а начало координат совпадало с серединой отрезка F1F2. Тогда фокусы будут иметь следующие координаты:иПусть М(х;у) - произвольная точка эллипса. Тогда, согласно опре­делению эллипса, т. е.

Это, по сути, и есть уравнение эллипса.

27.Определение гиперболы, каноническое уравнение. Вывод канонического уравнения. Свойства

Гиперболой называется геометрическое место точек плоскости, для которой абсолютная величина разности расстояния до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению гиперболы |MF 1 – MF 2 |=2a или MF 1 – MF 2 =±2a,

28.Определение параболы, каноническое уравнение. Вывод канонического уравнения. Свойства . Параболой называется ГМТ плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой, также расположенной в рассматриваемой плоскости. F – фокус параболы; фиксированная прямая – директриса параболы. r=d,

r=; d=x+p/2; (x-p/2) 2 +y 2 =(x+p/2) 2 ; x 2 -xp+p 2 /4+y 2 =x 2 +px+p 2 /4;y 2 =2px;

Свойства : 1.Парабола имеет ось симметрии(ось параболы); 2.Вся

парабола расположена в правой полуплоскости плоскости Oxy при p>0, и в левой

если p<0. 3.Директриса параболы, определяемая каноническим уравнением, имеет уравнение x= -p/2.

"

АГ.40. Расстояние между двумя скрещивающимися прямыми

В координатах

ФМП.3. ПОЛНОЕ ПРИРАЩЕНИЕ

функции нескольких переменных - приращение, приобретаемое функцией, когда все аргументы получают (вообще говоря, ненулевые) приращения. Точнее, пусть функция f определена в окрестности точки

n-мерного пространства переменных х 1 , . . ., х п. Приращение

функции f в точке x (0) , где

наз. полным приращением, если оно рассматривается как функция n всевозможных приращений Dx 1 , . . ., Dx n аргументов х 1 , . . ., х п, подчиненных только условию, что точка x (0) +Dx принадлежит области определения функции f. Наряду с П. п. функции рассматриваются частные приращения Dx k f функции f в точке х (0) по переменной х k , т. е. такие приращения Df, для к-рых Dx уj =0, j=1, 2, . . ., k- 1, k+1, . . ., п, k - фиксировано (k=1, 2, . . ., п).

ФМП.4. О: Частным приращением функции z = (х, у) по х называется разность частным приращением по

О: Частной производной по х от функции z = (x, у) называется предел отношения частного приращения к приращению Ах при стремлении последнего к нулю:

Другие обозначения: Аналогично и для перемен-

ной у.

Заметив, что определяется при неизменном у, а - при неизменном х, можно сформулировать правило: частная производная по х от функции z = (х, у) есть обычная производная по х, вычисленная в предположении, что у = const. Аналогично для вычисления частной производной по у надо считать х = const. Таким образом, правила вычисления частных производных те же, что и в случае функции одной переменной.

ФМП.5. Непрерывность функций. Определение непрерывности функции

Функция , называется непрерывной в точке , если выполняется одно из эквивалентных условий:

2) для произвольной последовательности (x n ) значений , сходящейся при n → ∞ к точке x 0 , соответствующая последовательность (f (x n )) значений функции сходится при n → ∞ к f (x 0);

3) или f (x ) - f (x 0) → 0 при x - x 0 → 0;

4) такое, что или, что то же самое,

f : ]x 0 - δ , x 0 + δ [ → ]f (x 0) - ε , f (x 0) + ε [.

Из определения непрерывности функции f в точке x 0 следует, что

Если функция f непрерывна в каждой точке интервала ]a , b [, то функция f называется непрерывной на этом интервале .

ФМП.6. В математическом анализе, частная производная - одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции f определяется следующим образом:

График функции z = x ² + xy + y ². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz .

Сечения графика, изображенного выше, плоскостью y = 1

Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где d x f - частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции f в точке по координате x k равна производной по направлению , где единица стоит на k -ом месте.

ЛА 76) Сист. ур-ний наз-ся крамеровской, если число уравнений равно числу неизвестных.

ЛА 77-78) Сист. наз-ся совместной, если у нее есть хотя бы одно решение, и несовместной в противном случае.

ЛА 79-80) Совместная сист. наз-ся определенной, если у нее только одно решение, и неопределенной в противном случае.

ЛА 81) …определитель крамеровской системы был отличен от нуля

ЛА 169) Для того чтобы система была совместной, необходимо и достаточно, чтобы ранг матрицы был равен рангу расширенной матрицы = .

ЛА 170) Если определитель крамеровской системы отличен от нуля, то система определена, и ее решение может быть найдено по формулам

ЛА 171) 1. Найдем решение крамеровской системы уравнений матричным способом; 2.. Запишем систему в матричном виде ; 3.Вычислим определитель системы, используя его свойства: 4. Затем записывает обратную матрицу А-1 ; 5. Поэтому

ЛА 172) Однородная система линейных уравнений AX = 0. Однородная система всегда совместна, поскольку имеет, по крайней мере, одно решение

ЛА 173) Если хотя бы один из определителей , , не равен нулю, то все решения системы (1) будут определяться по формулам , , , где t - произвольное число. Каждое отдельное решение получается при каком-либо определенном значении t.

ЛА 174) Совокупность решений однород. системы наз-ся фундаментальной системой решений, если: 1) линейно независимы; 2) любое решение системы является линейной комбинацией решений .

АГ118 . Общее уравнение плоскости имеет вид…

Уравнение плоскости вида называется общим уравнением плоскости .

АГ119 .Если плоскость a описывается уравнением Ax+D=0,то...

ПР 10 .Что такое бесконечно малая величина и каковы ее основные свойства?

ПР 11 . Какая величина называется бесконечно большой? Какова ее связь

с бесконечно малой?

ПР12.К акое предельное соотношение называется первым замечательны пределом? Под первым замечательным пределом понимается предельное соотношение

ПР 13 Какое предельное соотношение называется вторым замечательным пределом?

ПР 14 Какие пары эквивалентных функций Вы знаете?

ЧР64 Какой ряд называется гармоническим? При каком условии он сходиться?

Ряд вида называется гармоническим.

ЧР 65 .Чему равна сумма бесконечной убывающей прогрессии?

ЧР66. Какое утверждение понимается под первой теоремой сравнения?

Пусть даны два положительных ряда

Если, хотя бы с некоторого места (скажем, для ), выполняется неравенство: , то из сходимости ряда вытекает сходимость ряда или – что то же – из расходимости ряда следует расходимость ряда .

ЧР67 . Какое утверждение понимается под второй теоремой сравнения?

Предположим, что . Если существует предел

то при оба ряда сходятся или расходятся одновременно.

ЧР 45 Сформулируйте необходимый признак сходимости ряда.

Если ряд имеет конечную сумму, то его называют сходящимся.

ЧР 29 Гармонический ряд это ряд вида…. Он сходится, когда

Ряд вида называется гармоническим. Таким образом, гармонический ряд сходится при и расходится при .

АГ 6. Упорядоченная система линейно независимых векторов, лежащих на данной прямой (в данной плоскости, в пространстве), называется базисом на этой прямой (на этой плоскости, в пространстве), если любой вектор, лежащий на данной прямой (в данной плоскости, пространстве) представим в виде линейной комбинации векторов этой линейно независимой системы.

Любая пара неколлинеарных векторов, лежащих в данной плоскости, образует базис на этой плоскости.

АГ 7. Упорядоченная система линейно независимых векторов, лежащих на данной прямой (в данной плоскости, в пространстве), называется базисом на этой прямой (на этой плоскости, в пространстве), если любой вектор, лежащий на данной прямой (в данной плоскости, пространстве) представим в виде линейной комбинации векторов этой линейно независимой системы.

Любая тройка некомпланарных векторов образует базис в пространстве.

АГ 8, Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Для того чтобы найти координаты вектора с заданными началом и концом, нужно из координат конца вектора вычесть координаты его начала: если , , то .

АГ 9.а) Построим вектор (вектор, с началом в точке и концом в точке , называется радиус-вектором точки ).

АГ 10. Нет, т.к. радианная мера угла между двумя векторами всегда заключена между и

АГ 11. Скаляр- это любое действительное число.Скалярным произведением двух векторов и называется число, равное произведению их модулей на косинус угла между ними.

АГ 12. мы можем вычислить расстояние между точками, базисные векторы, угол между векторами.

АГ 13. Векторным произведением вектора на вектор называется третий вектор который обладает следующими свойствами:

Его длина равна

Вектор перпендикулярен к плоскости, в которой лежат вектора и

Если две прямые в пространстве имеют общую точку, то говорят, что эти две прямые пересекаются. На следующем рисунке, прямые a иb пересекаются в точке A. Прямые а и с не пересекаются.

Любые, две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Параллельные прямые

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и при этом не пересекаются. Для обозначения параллельных прямых используют специальный значок - ||.

Запись a||b означает, что прямая а параллельна прямой b. На рисунке представленном выше, прямые а и с параллельны.

Теорема о параллельных прямых

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной и притом только одна.

Скрещивающиеся прямые

Две прямые, которые лежат в одной плоскости, могут либо пересекаться либо быть параллельными. Но в пространстве две прямые не обязательно должны принадлежать оной плоскости. Они могут быть расположены в двух разных плоскостях.

Очевидно, что прямые расположенные в разных плоскостях не пересекаются и не являются параллельными прямыми. Две прямые, которые не лежат в одной плоскости, называются скрещивающими прямыми .

На следующем рисунке показаны две скрещивающиеся прямые a и b, которые лежат в разных плоскостях.

Признак и теорема о скрещивающихся прямых

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Теорема о скрещивающихся прямых : через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Таким образом, мы рассмотрели все возможные случаи взаимного расположения прямых в пространстве. Их всего три.

1. Прямые пересекаются. (То есть они имеют лишь одну общую точку.)

2. Прямые параллельны. (То есть они не имеют общих точек и лежат в одной плоскости.)

3. Прямые скрещиваются. (То есть они расположены в разных плоскостях.)