ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Изменения вязкости в рабочих условия. На характер изменения вязкости

1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона.

2. Ньютоновские и неньютоновские жидкости. Кровь.

3. Ламинарное и турбулентное течения, число Рейнольдса.

4. Формула Пуазейля, гидравлическое сопротивление.

5. Распределение давления при течении реальной жидкости по трубам различного сечения.

6. Методы определения вязкости жидкостей.

7. Влияние вязкости на некоторые медицинские процедуры. Ламинарность и турбулентность газового потока при наркозе. Введение жидкостей через капельницу и шприц. Риноманометрия. Фотогемотерапия.

8. Основные понятия и формулы.

9. Задачи.

Гидродинамика - раздел физики, в котором изучают вопросы движения несжимаемых жидкостей и их взаимодействие с окружающими телами.

8.1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона

В реальной жидкости вследствие взаимного притяжения и теплового движения молекул имеет место внутреннее трение, или вязкость. Рассмотрим это явление на следующем опыте (рис. 8.1).

Рис. 8.1. Течение вязкой жидкости между пластинами

Поместим слой жидкости между двумя параллельными твердыми пластинами. «Нижняя» пластина закреплена. Если двигать «верхнюю» пластину с постоянной скоростью v 1 , то c такой же скоростью будет двигаться самый «верхний» 1-й слой жидкости, который считаем «прилипшим» к верхней пластине. Этот слой влияет на нижележащий непосредственно под ним 2-й слой, заставляя его двигаться со скоростью v 2 , причем v 2 < v 1 . Каждый слой (выделим n слоев) передает движение нижележащему слою с меньшей скоростью. Слой, непосредственно «прилипший» к «нижней» пластине, остается неподвижным.

Слои взаимодействуют друг с другом: n-й слой ускоряет (п+1)-й слой, но замедляет (п-1)-й слой. Таким образом, наблюдается изменение скорости течения жидкости в направлении, перпендикулярном поверхности слоя (ось х). Такое изменение характеризуют производной dv/dx, которую называют градиентом скорости.

Силы, действующие между слоями и направленные по касательной к поверхности слоев, называются силами внутреннего трения или вязкости. Эти силы пропорциональны площади взаимодействующих слоев S и градиенту скорости. Для многих жидкостей силы внутреннего трения подчиняются уравнению Ньютона:

Коэффициент пропорциональности η называют коэффициентом внутреннего трения или динамической вязкостью (размерность η в СИ: Пас).

8.2. Ньютоновские и неньютоновские жидкости.

Кровь

Ньютоновская жидкость

Жидкость, которая подчиняется уравнению Ньютона (8.1), называют ньютоновской. Коэффициент внутреннего трения ньютоновской жидкости зависит от ее строения, температуры и давления, но не зависит от градиента скорости.

Ньютоновская жидкость - жидкость, вязкость которой не зависит от градиента скорости.

Свойствами ньютоновской жидкости обладают большинство жидкостей (вода, растворы, низкомолекулярные органические жидкости) и все газы.

Вязкость определяется с помощью специальных приборов - вискозиметров. Значения коэффициента вязкости η для некоторых жидкостей представлены в таблице.

Значение вязкости крови, представленное в таблице, относится к здоровому человеку в спокойном состоянии. При тяжелой физической работе вязкость крови увеличивается. На величину вязкости крови влияют и некоторые заболевания. Так, при сахарном диабете вязкость крови увеличивается до 23?10 -3 Пас, а при туберкулезе уменьшается до 1*10 -3 Пас. Вязкость сказывается на таком клиническом параметре, как скорость оседания эритроцитов (СОЭ).

Неньютоновская жидкость

Неньютоновская жидкость - жидкость, вязкость которой зависит от градиента скорости.

Свойствами неньютоновской жидкости обладают структурированные дисперсные системы (суспензии, эмульсии), растворы и расплавы некоторых полимеров, многие органические жидкости и др.

При прочих равных условиях вязкость таких жидкостей значительно больше, чем у ньютоновских жидкостей. Это связано с тем, что благодаря сцеплению молекул или частиц в неньютоновской жидкости образуются пространственные структуры, на разрушение которых затрачивается дополнительная энергия.

Кровь

Цельная кровь (суспензия эритроцитов в белковом растворе - плазме) является неньютоновской жидкостью вследствие агрегации эритроцитов.

Эритроцит в норме имеет форму двояковогнутого диска диаметром около 8 мкм. Он может существенно менять свою форму, например при различной осмолярности среды (рис. 8.2).

В неподвижной крови эритроциты агрегируют, образуя так называемые «монетные столбики», состоящие из 6-8 эритроцитов. Электронно-микроскопическое исследование тончайших срезов монетных столбиков выявило параллельность поверхностей прилежащих эритроцитов и постоянное межэритроцитарное расстояние при агрегации (рис. 8.3).

На рисунке 8.4 показана (зарисовка) агрегация цельной крови во влажных мазках, которая представляет собой большие конгломераты, состоящие из многих монетных столбиков. При перемешивании крови агрегаты разрушаются, а после прекращения перемешивания вновь восстанавливаются.

При протекании крови по капиллярам агрегаты эритроцитов распадаются и вязкость падает.

Вживление специальных прозрачных окошек в кожные складки позволило сфотографировать течение крови в капиллярах. На рисунке 8.5, выполненном по такой фотографии, отчетливо видна деформация кровяных клеток.

Рис. 8.2. Усредненное поперечное сечение эритроцита при различной осмолярности среды

Рис. 8.3. Схема электроннограммы агрегата из нормальных эритроцитов

Рис. 8.4. Агрегация цельной крови

Рис. 8.5. Деформация эритроцитов в капиллярах

Деформируясь, эритроциты могут продвигаться один за другим в капиллярах диаметром всего 3 мкм. Именно в таких тонких капиллярных сосудах и происходит газообмен между кровью и тканями.

Вблизи стенки капилляра образуется очень тонкий слой плазмы, который играет роль смазки. Благодаря этому сопротивление движению эритроцитов уменьшается.

8.3. Ламинарное и турбулентное течения, число Рейнольдса

В жидкости течение может быть ламинарным или турбулентным. На рисунке 8.6 это показано для одной окрашенной струи жидкости, текущей в другой.

В случае (а) струя окрашенной жидкости сохраняет неизменную форму и не смешивается с остальной жидкостью. В случае (б) окрашенная струя разрывается случайными завихрениями, картина которых меняется с течением времени. К турбулентному течению понятие «трубка тока» неприменимо.

Рис. 8.6. Ламинарное (а) и турбулентное (б) течения струи жидкости

Ламинарное (слоистое) течение - такое течение, при котором слои жидкости текут, не перемешиваясь, скользя друг относительно друга. Ламинарное течение является стационарным - скорость течения в каждой точке пространства остается постоянной.

Рассмотрим ламинарное течение ньютоновской жидкости в трубе радиуса R и длины L, давления на концах которой постоянны (Р 1 и Р 2). Выделим цилиндрическую трубку тока радиуса r (рис. 8.7).

На жидкость внутри этой трубки действуют сила давления F д = πг 2 (Р 1 - Р 2) и сила вязкого трения F тр = 2πrLηdv/dr (2πrL - пло-

Рис. 8.7. Трубка тока и действующая на нее сила трения

щадь боковой поверхности). Так как течение стационарное, сумма этих сил равна нулю:

В соответствии с приведенным выражением имеет место параболическая зависимость скорости v слоев жидкости от расстояния от них до оси трубы r (огибающая всех векторов скорости есть парабола) (рис. 8.8).

Наибольшую скорость имеет слой, текущий вдоль оси трубы (r = 0), слой, «прилипший» к стенке (r = R), неподвижен.

Рис. 8.8. Скорости слоев текущей через трубку жидкости распределены по параболе

Турбулентное (вихревое) течение - такое течение, при котором скорости частиц жидкости в каждой точке беспорядочно меняются. Такое движение сопровождается появлением звука. Турбулентное течение - это хаотическое, крайне нерегулярное, неупорядоченное течение жидкости. Элементы жидкости совершают движение по сложным неупорядоченным траекториям, что приводит к перемешиванию слоев и образованию местных завихрений.

Структура турбулентного течения представляет собой нестационарную совокупность очень большого числа малых вихрей, наложенных на основное «среднее течение».

При этом говорить о течении в ту или иную сторону можно только в среднем за какой-то промежуток времени.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости: часть энергии расходуется на беспорядочное движение, направление которого отличается от основного направления потока, что в случае крови приводит к дополнительной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболевания. Этот шум прослушивается, например, на плечевой артерии при измерении давления крови.

Турбулентное движение крови может возникнуть вследствие неравномерного сужения просвета сосуда (или локального выпирания). Турбулентное течение создает условия для оседания тромбоцитов и образования агрегатов. Этот процесс часто является пусковым

в формировании тромба. Кроме того, если тромб слабо связан со стенкой сосуда, то под действием резкого перепада давления вдоль него вследствие турбулентности он может начать двигаться.

Число Рейнольдса

Понятия ламинарности и турбулентности применимы как к течению жидкости по трубам, так и к обтеканию ею различных тел. В обоих случаях характер течения зависит от скорости течения, свойств жидкости и характерного линейного размера трубы или обтекаемого тела.

Английский физик и инженер Осборн Рейнольдс (1842-1912) составил безразмерную комбинацию, величина которой и определяет характер течения. Впоследствии эта комбинация была названа числом Рейнольдса (Re):

Число Рейнольдса используют при моделировании гидро- и аэродинамических систем, в частности кровеносной системы. Модель должна иметь такое же число Рейнольдса, как и сам объект, в противном случае соответствия между ними не будет.

Важным свойством турбулентного течения (по сравнению с ламинарным) является высокое сопротивление потоку. Если бы удалось «погасить» турбулентность, то удалось бы достичь огромной экономии мощности двигателей кораблей, подводных лодок, самолетов.

8.4. Формула Пуазейля, гидравлическое сопротивление

Рассмотрим, от каких факторов зависит объем жидкости, протекающей по горизонтальной трубе.

Формула Пуазейля

При ламинарном течении жидкости по трубе радиуса R и длины L объем Q жидкости, протекающей через горизонтальную трубу за одну секунду, можно вычислить следующим образом. Выделим тонкий цилиндрический слой радиуса r и толщины dr (рис. 8.9).

Рис. 8.9. Сечение трубы с выделенным слоем жидкости

Площадь его поперечного сечения равна dS = 2πrdr. Так как выделен тонкий слой, жидкость в нем перемещается с одинаковой скоростью v. За одну секунду слой перенесет объем жидкости

Подставив сюда формулу для скорости цилиндрического слоя жидкости (8.4), получим

Это соотношение справедливо для ламинарного течения ньютоновской жидкости.

Формулу Пуазейля можно записать в виде, справедливом для труб переменного сечения. Заменим выражение (Р 1 - Р 2)/L на градиент давления dP/d/, тогда получим

Как видно из (8.8), при заданных внешних условиях объем жидкости, протекающей по трубе, пропорционален четвертой степени ее радиуса. Это очень сильная зависимость. Так, например, если при атеросклерозе радиус сосудов уменьшится в 2 раза, то для поддержания нормального кровотока перепад давлений нужно увеличить в 16 раз, что практически невозможно. В результате возникает кислородное голодание соответствующих тканей. Этим объясняется возникновение «грудной жабы». Облегчения можно достичь, вводя лекарственное вещество, которое расслабляет мышцы артериальных стенок и позволяет увеличить просвет сосуда и, следовательно, поток крови.

Поток крови, проходящей через сосуды, регулируется специальными мышцами, окружающими сосуд. При их сокращении просвет сосуда уменьшается и соответственно убывает поток крови. Таким образом, незначительным сокращением этих мышц очень точно контролируется поступление крови в ткани.

В организме путем изменения радиуса сосудов (сужения или расширения) за счет изменения объемной скорости кровотока регулируется кровоснабжение тканей, теплообмен с окружающей средой.

Причины движения крови по сосудам

Главная движущая сила кровотока - разность давлений в начале и в конце сосудистой системы: в большом круге кровообращения - разность давлений в аорте и правом предсердии, в малом круге - в легочной артерии и левом предсердии.

Дополнителные факторы, способствующие движению крови по венам в сторону сердца:

1) полулунные клапаны вен конечностей, которые открываются под напором крови только в сторону сердца;

2) присасывающее действие грудной клетки, связанное с отрицательным давлением в ней при вдохе;

3) сокращение мышц конечностей, например, при хотьбе. При этом происходит надавливание на стенки вен, и кровь, благодаря клапанам и присасывающему действию грудной клетки при вдохе, выжимается в участки, расположенные ближе к сердцу.

Гидравлическое сопротивление

Проведем аналогию между формулой Пуазейля и формулой закона Ома для участка цепи тока: I = ΔU /R. Для этого перепишем формулу (8.8) в следующем виде: Q = (P 1 - Р 2)/. Если сравнить эту формулу с законом Ома для электрического тока, то объем жидкости, протекающей через сечение трубы за одну секунду, соответствует силе тока; разность давлений на концах трубы соответствует разности потенциалов; а величина 8ηL/(πR 4) соответствует электрическому сопротивлению. Ее называют гидравлическим сопротивлением:

Гидравлическое сопротивление трубы прямо пропорционально ее длине и обратно пропорционально четвертой степени радиуса.

Если изменением кинетической энергии жидкости на некотором участке можно пренебречь, то рассмотренная аналогия применима и к потоку переменного сечения:

гидравлическим сопротивлением участка называется отношение перепада давлений к объему жидкости, протекающему за 1 секунду:

Наличие гидравлического сопротивления связано с преодолением сил внутреннего трения.

Законы гидродинамики значительно сложнее законов постоянного тока, поэтому и законы соединения труб (кровеносных сосудов) сложнее законов соединения проводников. Так, например, места резкого сужения потока (даже при небольшой длине) обладают большим собственным гидравлическим сопротивлением. Этим и объясняется значительное увеличение гидравлического сопротивления кровеносного сосуда при образовании небольшой бляшки.

Наличие собственного сопротивления у мест резкого сужения потока необходимо учитывать при расчете сопротивления участка, состоящего

Рис. 8.10. Трубы, соединенные последовательно (а) и параллельно (б)

из труб различного диаметра. На рис. 8.10,а показано последовательное сопротивление трех труб. Места сужения обладают собственным сопротивлением Х 12 и Х 23 . Поэтому сопротивление участка равно

Электрический аналог (8.13) формулы для расчета гидродинамического сопротивления параллельного соединения (рис 8.10, б) также требует учета сопротивлений мест соединения труб.

8.5. Распределение давления при течении реальной жидкости по трубам различного сечения

При течении по горизонтальной трубе реальной жидкости работа внешних сил расходуется на преодоление внутреннего трения. Поэтому статическое давление вдоль трубы постепенно падает. Этот эффект может быть продемонстрирован на простом опыте. Установим в разных местах горизонтальной трубы, по которой течет вязкая жидкость, манометрические трубки (рис. 8.11).

Рис. 8.11. Падение давления вязкой жидкости в трубах различного сечения

Из рисунка видно, что при постоянном сечении трубы давление падает пропорционально длине. При этом скорость падения давления (dP/dl ) увеличивается при уменьшении сечения трубы. Это объясняется ростом гидравлического сопротивления при уменьшении радиуса.

В кровеносной системе человека на капилляры приходится до 70 % падения давления.

8.6. Методы определения вязкости жидкостей

Совокупность методов измерения вязкости жидкости называется вискозиметрией. Прибор для измерения вязкости называется вискозиметром. В зависимости от метода измерения вязкости используют следующие типы вискозиметров.

1. Капиллярный вискозиметр Оствальда основан на использовании формулы Пуазейля. Вязкость определяется по результату измерения времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

2. Медицинский вискозиметр Гесса с двумя капиллярами, в которых движутся две жидкости (например, дистиллированная вода и кровь). Вязкость одной жидкости должна быть известна. Учитывая, что перемещение жидкостей за одно и то же время обратно пропорционально их вязкости, вычисляют вязкость второй жидкости.

3. Вискозиметр, основанный на методе Стокса, согласно которому при движении шарика радиуса R в жидкости с вязкостью η при небольшой скорости v сила сопротивления пропорциональна вязкости этой жидкости: F = 6πηRv (формула Стокса). Эритроциты перемещаются в вязкой жидкости - плазме крови. Так как эритроциты имеют дискообразную форму и оседают в вязкой жидкости, то скорость их оседания (СОЭ) можно определить приближенно по формуле Стокса. О скорости оседания судят по количеству плазмы над осевшими эритроцитами. В норме скорость оседания эритроцитов равна: 7-12 мм/ч для женщин и 3-9 мм/ч для мужчин.

4. Вискозиметр ротационный (рис. 8.12) состоит из двух коаксиальных (соосных) цилиндров. Радиус внутреннего цилиндра - R, радиус внешнего цилиндра - R+ΔR (ΔR << R). Пространство между цилин-

Рис. 8.12. Ротационный вискозиметр (сечения вдоль и перпендикулярно оси)

драми заполняют исследуемой жидкостью до некоторой высоты h. Затем внутренний цилиндр приводят во вращение, прикладывая определенный момент сил М, и измеряют установившуюся частоту вращения ν.

Вязкость жидкости вычисляют по формуле

Применяя ротационный вискозиметр, можно измерять вязкость при разных угловых скоростях вращения ротора. Данный метод позволяет установить зависимость между вязкостью и градиентом скорости, что важно для неньютоновских жидкостей.

8.7. Влияние вязкости на некоторые медицинские

процедуры

Наркоз

В некоторых медицинских мероприятиях используется наркоз. При этом необходимо по возможности уменьшить усилия, затрачиваемые больным на дыхание через эндотрахеальные и другие дыхательные трубки, посредством которых подается дыхательная смесь из аппаратов для наркоза (рис. 8.13).

Для обеспечения плавного газового потока используются плавно изогнутые соединительные трубки. Неровности внутренних стенок трубки, резкие изгибы и изменения внутреннего диаметра трубок

Рис. 8.13. Дыхание больного через эндотрахеальную трубку

Рис. 8.14. Возникновение турбулентности газового потока в трубке с резкими неоднородностями по сечению

и соединений часто являются причинами перехода ламинарного потока в турбулентный (рис. 8.14), что затрудняет процесс дыхания у больного.

На рисунке 8.15 приведен рентгеновский снимок головы больного, показывающий, что эндотрахеальная трубка перегнулась в глотке. В данном случае у больного обязательно возникнут затруднения дыхания.

Введение жидкостей через шприц и капельницу

Шприц - очень простой прибор (рис. 8.16), который используют для инъекций. И тем не менее при описании его работы часто допускается ошибка, связанная с нахождением перепада давлений (ΔР) на игле, которая приводит к неверному результату. Считают, что

Рис. 8.15. Рентгеновский снимок, на котором виден перегиб дыхательной трубки

Рис. 8.16. Работа шприца

ΔP = F/S, где F - сила, действующая на поршень, а S - его площадь. При этом исходят из следующих соображений: поршень движется медленно и динамическим давлением жидкости в цилиндре можно

пренебречь. Это неверно - на входе в иглу линии тока сгущаются и скорость движения жидкости резко возрастает.

Строгий расчет (см. задачу 8.12) приводит к следующему результату. Перепад давления на игле (ΔР) является решением квадратного уравнения

Значения всех величин подставляются в СИ.

Ниже приводятся результаты расчетов для двух игл длины 4 см, диаметры которых отличаются в 1,5 раза.

Из результатов, представленных в нижней таблице, видно, что АР вовсе не равно F/S! При этом увеличение диаметра иглы в 1,5 раза приводит к увеличению объемной скорости всего в 3,5 раза, а не в 5 раз (1,5 4 = 5,06), как этого можно было ожидать. Ламинарный характер течения имеет место в обоих случаях.

Другим прибором для внутривенного вливания является капельница (рис. 8.17), которая позволяет вводить жидкость самотеком за счет разности давлений, создаваемой при подъеме камеры с препаратом на определенную высоту (~60 см).

Формулы 8.14, 8.15 применимы и здесь, если заменить величину F/S на гидростатическое давление столба жидкости pgh. При этом S - площадь сечения трубки, а u - скорость движения жидкости в ней. Ниже приведены результаты расчетов для h = 60 см.

Полученные значения являются правильными, но не соответствуют тому, что происходит на самом деле. В данном случае получается завышенное значение для объемной скорости ввода препарата - 0,827 см 3 /с. Реальная скорость Q = 0,278 см 3 /с (из расчета 500 мл за 30 минут). Расхождение получается из-за того, что не учтено гидравлическое сопротивление, создаваемое устройством, пережимающим трубку.

Риноманометрия

Полноценное носовое дыхание является необходимой предпосылкой для нормальной функции слуховой трубы, которая во многом зависит от степени аэрации носоглотки и правильного прохождения воздушных потоков в полости носа. Причиной нарушения носового дыхания часто являются некоторые врожденные патологии, например расщелина верхней губы и неба. Часто при лечении этой патологии

Рис. 8.17. Введение препарата через капельницу

используются хирургические методы, например реконструктивная ринохейлопластика (ринопластика - операции восстановления носа). Для объективной характеристики результатов оперативного вмешательства используется риноманометрия - метод определения объема носового дыхания и сопротивления. Скорость воздушного потока характеризуется формулой Пуазейля, при этом учитывается градиент давления, обусловленный изменением давления в носоглоточном пространстве; диаметр и длина носовой полости; характеристики воздушного потока в носоглотке (ламинарность или турбулентность). Данный метод реализуется с помощью прибора - риноманометра, который позволяет регистрировать давление в одной половине носа, пока пациент дышит через другую. Это осуществляется с помощью катетера, который специально крепится в носу. Компьютерная схема риноманометра позволяет автоматически измерить общий объем и сопротивление воздуха на вдохе и выдохе, раздельно проанализировать поток и сопротивление воздуха в каждой половине носа и рассчитать их соотношение. Это позволяет определить носовое дыхание до и после операции и оценить степень восстановления носового дыхания.

Фотогемотерапия

При заболеваниях, сопровождающихся повышением вязкости крови, для уменьшения вязкости крови применяется метод фотогемотерапии. Он заключается в том, что у больного берут небольшое количество крови (примерно 2 мл/кг веса), подвергают ее УФ-облучению и вводят обратно в кровеносное русло. Примерно через 5 мин после введения больным 100-200 мл облученной крови наблюдается значительное снижение вязкости во всем объеме (около 5 л) циркулирующей крови. Исследования зависимости вязкости от скорости движения крови показали, что при фотогемотерапии вязкость сильнее всего снижается (примерно на 30 %) в медленно движущейся крови и совсем не меняется в быстро движущейся крови. УФ-облучение вызывает снижение способности эритроцитов к агрегации и увеличивает деформируемость эритроцитов. Помимо этого происходит снижение образования тромбов. Все эти явления приводят к значительному улучшению как макро-, так и микроциркуляции крови.

8.8. Основные понятия и формулы

Окончание таблицы

8.9. Задачи

1. Вывести формулу для определения вязкости ротационным вискозиметром. Дано: R, ΔR, h, ν, M.

2. Определить время протекания крови через капилляр вискозиметра, если вода протекает через него за 10 с. Объемы воды и крови одинаковы. Плотность воды и крови равны p 1 = 1 г/см 3 , ρ 2 = 1,06 г/см 3 . Вязкость крови относительно воды равна 5 (η 2 /η 1 = 5).

3. Допустим, что в двух кровеносных сосудах градиент давления одинаков, а поток крови (объемный расход) во втором сосуде на 80% меньше, чем в первом. Найти отношение их диаметров.

4. Какова должна быть разность давлений АР на концах капилляра радиуса r = 1 мм и длины L = 10 см, чтобы за время t = 5 с через него можно было пропустить объем V = 1 см 3 воды (коэффициент вязкости η 1 = 10 -3 Пас) или глицерина (η 2 = 0,85 Пас)?

5. Падение давления в кровеносном сосуде длины L = 55 мм и радиуса r = 1,5 мм равно 365 Па. Определить, сколько миллилитров крови протекает через сосуд за 1 минуту. Коэффициент вязкости крови η = 4,5 мПа-с.

6. При атеросклерозе, вследствие образования бляшек на стенках сосуда, критическое значение числа Рейнольдса может снизиться до 1160. Определить для этого случая скорость, при которой возможен переход ламинарного течения крови в турбулентное в сосуде диаметром 2,5 мм. Плотность крови равна ρ = 1050 кг/м 3 , вязкость крови равна η = 5х10 -3 Пас.

7. Средняя скорость крови в аорте радиусом 1 см равна 30 см/с. Выяснить, является ли данное течение ламинарным? Плотность крови ρ = 1,05х10 3 кг/м 3 .

η = 4х10 -3 Па-с; Rе кр = 2300.

8. При большой физической нагрузке скорость кровотока иногда увеличивается вдвое. Пользуясь данными примера задачи (7), определить характер течения в этом случае.

Решение

Re = 2x1575 = 3150. Течение турбулентное.

Ответ: число Рейнольдса больше критического значения, поэтому течение может стать турбулентным.


10. Определить максимальную массу крови, которая может пройти за 1 с через аорту при сохранении ламинарного характера течения. Диаметр аорты D = 2 см, вязкость крови η = 4x10 -3 Па-с.

11. Определить максимальную объемную скорость протекания жидкости по игле шприца с внутренним диаметром D = 0,3 мм, при которой сохраняется ламинарный характер течения.

12. Найти объемную скорость жидкости в игле шприца. Плотность жидкости - ρ; ее вязкость - η; диаметр и длина иглы D и L соответственно; сила, действующая на поршень, - F; площадь поршня - S.

Интегрируя по r, получим:

Пусть поршень шприца движется под действием силы F со скоростью u. Тогда мощность внешней силы N F = Fu.

Суммарная работа всех сил равна изменению кинетической энергии. Следовательно,

Подставив найденное значение A P во второе уравнение, получим все интересующие нас величины: скорость поршня и, объемную скорость кровотока Q, скорость жидкости в игле v.

БАЗОВЫЕ МАСЛА
Минеральные масла
Хорошее минеральное масло является надежным сырьем смазочных масел. Оно обладает стабильными свойствами, в частности стабильной растворимостью присадок, эффективностью их действия, а также меньше изнашивает прокладки и сальники, особенно старого образца (т.н. сальниковые набивки). В нормальных эксплуатационных условиях смазочные свойства минеральных масел вполне достаточны при условии выбора подходящей вязкости. Однако на базе минерального масла трудно, а иногда и невозможно разработать смазочный материал, обладающий отличными свойствами при низких температурах и в то же время сохраняющий достаточно высокие смазочные свойства и при высоких эксплуатационных температурах.

Частично синтетические масла
Свойства минеральных масел можно улучшать заменой части минерального масла на синтетические компоненты. Таким образом можно производить обладающие хорошими свойствами при низких температурах, круглогодичные масла SAE 5w-XX, которые трудно производить на базе одного только минерального масла.

Синтетические масла
С помощью синтетических базовых масел можно улучшить свойства смазочных материалов. Однако само по себе применение синтетического базового масла не всегда гарантирует высокие свойства, для обеспечения хорошего качества требуется очень внимательный подбор компонентов и оптимизация их смеси. Поэтому возможна весьма большая разница в стоимости "однотипных" синтетических масел.
Синтетические масла позволяют достичь следующих свойств:
отличные свойства при низких температурах, в т.ч. легкий запуск двигателя и смазка в холодных условиях.
отличные свойства при высоких температурах, в частности, стабильность против окисления, низкая летучесть и расход масла.

СНОВНЫЕ СВОЙСТВА МАСЕЛ.

Плотность и удельный вес
Плотность вещества - это соотношение его массы к объему (кг/м 3), а удельный вес - соотношение массы определенного объема вещества к массе соответствующего объема воды при 20°С. Плотность и удельный вес зависят от температуры.
Вязкость
Вязкость - это величина, которая характеризует текучесть жидкости. Вязкость зависит от температуры.С понижением температуры вязкость возрастает. Общим для всех образцов масел является наличие областей температур,в которых наступает резкое повышение вязкости.Для нефтяных смазочных масел очень важно при эксплуатации,чтобы вязкость как можно меньше зависила от температуры,посколько это обеспечивает хорошие смазывающие свойства масла в широком интервале температур. Для разных у\в по-разному меняется вязкостьот температуры.Наиболее крутая зависимоть у ароматич. у\в,наим.-у алканов.Нафтеновые у\в близки к алканам.

Индекс вязкости(функция химического состава масла)
Он характеризует зависимость вязкости масла от изменения температуры. Чем больше индекс вязкости, тем меньше вязкость масла изменяется при колебании температуры.
Температура вспышки
При повышении температуры из масла выделяются лары, которые при поднесении открытого огня вспыхивают. Эта температура называется температурой вспышки, которую можно измерять либо в открытом (Cleveland), либо закрытом тигле (Pensky-Martens).
Температура застывания
Температура застывания - это самая низкая температура, при которой масло еще полностью не потеряло текучесть при наклонении пробирки, в которой его охладили. Температура застывания характеризует момент резкого увеличения вязкости при снижении температуры, или кристаллизации парафина вместе с повышением вязкости в такой степени, что масло становится твердым.
Число нейтрализации
В зависимости от базовых масел и присадок, а также эксплуатационных условий, в результате окисления в смазочных маслах содержатся кислотные и/или щелочные продукты. Общее щелочное число (TBN) или общее кислотное число (TAN) анализируются в лабораторных условиях. Величина этих показателей характеризует количество тех щелочных/кислых продуктов, которое требуется для нейтрализации масла. Кислотное число измеряется в (мг КОН/г) (миллиграмм гидроокиси калия на грамм масла).

Вязкость масла может расти от ряда причин, таких как полимеризация, окисление, испарение низкокипящих фракций и образование растворённого кокса и оксидов. Загрязнения, такие как вода, воздух, сажа, антифриз и добавление «неправильного» масла, могут также быть причиной роста вязкости масла. Давайте рассмотрим каждый из этих факторов в отдельности.

Полимеризация. Полимеризация основных компонентов масла может происходить, когда масло долгое время подвергается воздействию высоких температур. Базовое масло содержит вариации различных, но тесно связанных между собой, органических компонентов. Высокая температура может стать причиной того, что некоторые компоненты в результате химических реакция начнут «склеиваться» между собой, создавая высокомолекулярные тяжелые компоненты. Результатом этого становится значительное увеличение вязкости и точки кипения масла.

Окисление. Другой процесс, близко связанный с полимеризацией, это окисление, т. к. рост окисления также является следствием воздействия высокой рабочей температуры. Базовое масло может вступать в реакцию с атмосферным кислородом. Эта реакция известна нам под названием окисление. Она также может привести к полимеризации, но в то же время может содействовать образованию органических кислот в масле. В результате рост кислотности и вязкости и поэтому показатель деградации масла связывают с уменьшением TBN (Total Base Number) 3 .

На каждые 10 °C роста температуры удваивается значение окисления и, размышляя логически, вполовину уменьшается срок службы масла. Это не так страшно как звучит, т. к. в масла добавлены присадки, которые борются с воздействием высокой температуры и образованием кислоты. Вопрос, который часто задают: «Какую максимальную температуру выдержит это масло?». К сожалению, ответа нет, т.к. срок службы масла зависит не только от рабочей температуры, но и от времени тоже. Итак, что нам нужно знать, так это как горячо и как долго? Моторное масло могло бы «спокойно» отработать при 150 °C час или около того, но сильно деградировать при 100 °C за более долгий промежуток времени.



Образование растворённых в масле кокса и оксидов. Также связан с окислением процесс образования растворённых в масле кокса и оксидов. Высокая рабочая температура может стать причиной образования различных компонентов, которые растворены в масле. Сажа образуется, когда масло частично окислилось, также могут образовываться другие продукты деградации масла, которые способствуют росту вязкости масла. Этот эффект может быть достигнут просто в результате долгой эксплуатации масла – даже лучшие масла не вечны.

Потеря низкокипящих фракций. Высокая рабочая температура может также быть причиной термической деградации масла и без присутствия кислорода. Как уже было сказано, базовое масло состоит из различных, тесно взаимосвязанных, компонентов. Эти компоненты имеют различную испаряемость (точку кипения). Если масло подвергается нагрузкам длительный период, они выше нормы, но нет воздействия высокой температуры, тогда компоненты с более низкой точкой кипения будут испаряться. Этот процесс известен как испарение низкокипящих фракций. Эти более испаряющиеся компоненты также являются частью масла, имеющей более низкую вязкость, таким образом, потеря этой фракции ведет к росту вязкости.

Загрязнения. Загрязнения также играют роль в росте вязкости. Вода может иметь более низкую вязкость, чем масло, но когда вода и масло смешаны, то возможна реакция с базовым маслом и, что более важно, с присадками. Могут формироваться стабильные эмульсии, которые образовывают компоненты увеличивающие вязкость масла. Вода также является еще одним источником кислорода, который может усиливать окисление при определенных обстоятельствах. Реакция воды с маслом и его присадками известна как гидролиз. Небольшое, но измеряемое количество воды может растворяться в масле, затем образовываются эмульсии и, наконец, свободная вода видна в масле. Величина воды в каждой фазе зависит от базового масла, химии присадок и температуры масла.

Воздух может находиться в масле в растворённом и свободном виде. Он также может засасываться в масло (эквивалент эмульсии) и образовывать пену. Воздух действует как поставщик кислорода и, если он хорошо смешан с маслом, он будет усиливать реакцию окисления, что загустит масло.

В идеале сгорание ископаемого топлива, такого как дизельное топливо или бензин, приведет к образованию диоксида углерода, паров воды и ничего кроме этого. Но мы живём в реальном мире, где топливо содержит примеси, а процесс сгорания не проходит со 100% эффективностью. Неполное сгорание ведёт к частично окисленному топливу, которое превращается в сажу, накапливающуюся в масле. Вот почему дизельные моторные масла становятся чёрными после короткого периода времени. Ещё раз, масла разработаны с присадками, чтобы работать с определённым количеством сажи, но как только предел будет достигнут, появление любого количества сажи будет увеличивать вязкость масла. Это явление известно как шламообразование, с которым многие из вас возможно знакомы.

Загрязнение охладителем не только причина проблем связанных с присутствием воды, если охладитель содержит гликоль, то это ведет к чрезвычайно вредному воздействию на масло, и может стать причиной резкого загущения масла в очень короткий срок.

Простейший способ увеличить вязкость масла это добавить другое масло, имеющее более высокую вязкость. Заливка обычного SAE 10W с 20% SAE 50 увеличила бы вязкость на 35%. Наконец, если вы хотите увеличить вязкость вашего масла, просто забудьте его поменять. Все эффекты, здесь перечисленные, со временем только усугубляются. Чем дольше эксплуатируется масло, тем больше оно деградирует и обычное следствие этого - увеличение вязкости. Запомните, что присадки в вашем масле приносятся в жертву. Один раз они делают свою работу и всё. Они не могут быть восстановлены - масло не может служить вечно.

Так что за последствия высокой вязкости? Высокая вязкость может создать вязкостное торможение. Оно создаёт больше трения, которое, в свою очередь, создает теплоту, которая будет ускорять процесс окисления – в результате порочный круг в противоположность вязкостному кругу. Недостаточный подвод смазки к подшипникам, кавитация, вспененное масло в шейке вала, потери энергии и мощности, низкие антипенные и деэмульгирующие характеристики, задержка жидкости в сливной линии и недостаточная прокачиваемость при холодном старте могут также быть результатом возросшей вязкости. Сказав все это, надо упомянуть, что часто масло со слишком низкой вязкостью, может нанести механизмам вреда больше, так что же может быть причиной снижения вязкости?

Причин для снижения вязкости масла меньше, ведь масло более «расположено» к росту вязкости, т.к. это естественная физическая и химическая возрастная тенденция.

Вязкость масла может также падать из-за загрязнений , большинство источников которых это разбавление с топливом. Самый серьёзный эффект смешения с топливом случающийся с маслом это уменьшение вязкости масла и в результате потеря несущей способности масла. Это означает, что масляная пленка слишком тонка, для того чтобы не давать соприкасаться движущимся металлическим поверхностям, и какая-либо поломка или заедание неизбежны. Очевидно, что серьёзность поломки и время до неё будет зависеть от таких вещей как применение, окружающая среда, нагрузка, период смены масла, техническое обслуживание и др. Есть жёсткое эмпирическое правило: растворение в масле 8,5% топлива снизит вязкость масла SAE 15W-40 на 30% при 40 °C и на 20% при 100 °C.

Другой эффект менее очевидный и не такой серьёзный это то, что топливо, в отличие от масла, не содержит каких-либо присадок, так если у вас растворено в масле 10% топлива, то вы имеете снижение концентрации пакета присадок на ту же величину. Это становится серьёзной проблемой, когда растворение топливом действительно велико.

Вязкость также может быть снижена добавлением растворителей , используемых как промывающие или моющие агенты. Растворители могут также попасть в двигатель вместе с некачественным топливом. Холодильные компрессоры могут быть загрязнены охлаждающим газом (хладагентом), который понижает вязкость, как будет понижать любой другой технологический газ, который начнет растворяться в смазочном материале в любом другом месте на производстве.

Наконец, как в случае с ростом вязкости, вязкость масла может быть понижена путём добавления менее вязкого масла. Добавление 20% масла SAE 10W в масло SAE 50 снизит вязкость величину близкую к 30%.

Последствия низкой вязкости. Так что за последствия низкой вязкости? Чрезмерный износ, из-за потери несущей способности масла, которая уже упоминалась в связи с топливным разбавлением. Потери энергии и рост сил трения из-за контакта металла по металлу. Возрастание механического трения увеличивает величину создаваемого тепла и, таким образом, рост вероятности окисления. Одна из функций смазочного материала состоит в том, чтобы разделять трущиеся поверхности, быть как бы прокладкой между ними; низкая вязкость этому не способствует, также могут стать проблемой внутренние и внешние утечки. Маловязкие масла также более чувствительны к загрязняющим частицам, т.к. смазывающая плёнка слишком тонка. Наконец, гидродинамическая плёнка, в идеале, зависит от скорости, вязкости и прилагаемой нагрузки. Это означает, что если вязкость низкая, то применение высокой нагрузки в сочетании с низкой скоростью может привести к разрыву масляной пленки.

Измерения при 40 °С и 100 °С. Индустриальные стандарты диктуют, что температура при которой должна измеряться вязкость это 40 °C и 100 °C. Какая разница в свойствах при этих температурах? Измерение при 40 °C полезно для раннего определения окисления, полимеризации и перегрева масла. При этой температуре также хорошо определять загрязнения, такие как топливо и хладогенты, которые снижают вязкость. Добавление масел различной вязкости более заметно при низкой температуре. Имеет смысл делать измерения вязкости при температуре близкой к рабочей для оборудования. Для оборудования работающего при температуре близкой к окружающей, вязкость должна измеряться при 40 °C. Очевидно, что работать инструментами для измерения вязкости, при температуре близкой к окружающей, легче, особенно в поле или на производстве.

Измерения при 100 °C имеют преимущества при определении снижения индекса вязкости и лучше подходит для компонентов которые работают при высоких температурах, таких как двигатели внутреннего сгорания. Обе температуры могут применяться тогда, когда важно определить значение или изменение VI, и где необходимо получить много показателей. Обычно, все образцы измеряют на вязкость при 40 °C, но для двигателей внутреннего сгорания также необходимо измерять вязкость при 100 °C.

Просто замена масла, потому что вязкость слишком большая или слишком низкая, не заставит проблему исчезнуть, требуется активный поиск неисправности.

Если вязкость слишком велика, проверьте:

· рабочую температуру;

· эффективность сгорания;

· присутствие воды или гликоля;

· наличие воздуха в масле;

· процедуру заливки масла.

Если вязкость слишком низкая, проверьте:

· исправность системы питания;

· наличие значительных сил сдвига;

· наличие высокой температуры вызывающей термический крекинг;

· загрязнение растворителем или растворенным газом;

· процедуру заливки масла.

Как было ясно показано, много чего может пойти не так с вязкостью масла, по многим причинам, и все они сигнализируют и являются следствием различных неисправностей. Держите вязкость масла в допустимых пределах и как результат получите хорошо работающее оборудование, устраните внезапные отказы, получите низкую стоимость работы оборудования и меньший расход запасных частей, уменьшите простои и увеличите прибыль. Убедитесь, что вязкость наблюдается регулярно, чтобы любая проблема могла быть устранена до того когда она превратится в катастрофу.

Компьютерный способ определения качества моторного масла. Он относится к диагностированию дизельных двигателей автотранспортных и военных машин, в частности к способам определения качества моторного масла с применением компьютера. Способ определения качества моторного масла заключается в том, что на лист фильтровальной бумаги наносят каплю масла, взятую щупом из системы смазки двигателя внутреннего сгорания. После получения пятна на бумаге фиксируют его внешний вид с возможностью ввода полученной информации в компьютер и сравнивают его при помощи компьютера с внешним видом эталонных пятен, предварительно введенных в компьютер, на основании чего определяют качество масла. Эталонным пятнам, введенным в компьютер, присваивают соответствующую наработку масла с начала эксплуатации. Фиксируют наработку оцениваемого масла с начала эксплуатации при сравнении оцениваемого пятна с эталонным, а при фиксации наработки одновременно определяют его остаточный ресурс. Такое выполнение повышает информативность результатов оценки качества масла, а также снижает затраты труда на его определение.

Известен способ определения качества моторного масла по пятну на фильтровальной бумаге, при котором на фильтровальную бумагу наносят каплю масла, взятую щупом из системы смазки. При этом характеристики качества масла находят по отношению наружного диаметра пятна к внутреннему диаметру внешнего кольца пятна, а также по отношению внутреннего диаметра внешнего кольца пятна к диаметру его ядра.

Недостатки указанного способа: полученные пятна часто не имеют четкой формы круга, что существенно влияет на определяемые характеристики качества масла и, следовательно, на достоверность результата его проверки.

Существует способ определения качества масла на основе сравнения пятна оцениваемого масла с эталонными пятнами.

Недостатки этого способа: сравнение пятен производят визуально, что также снижает достоверность результатов оценки качества масел. При этом отсутствует возможность быстрого ввода информации в компьютер.

Наиболее близким техническим решением, выбранным в качестве прототипа, является компьютерный способ оценки качества моторного масла, при котором после получения пятна оцениваемого масла фиксируют его внешний вид с возможностью ввода полученных данных в компьютер. Затем вводят их в компьютер и сравнивают при помощи компьютера с внешним видом эталонов, предварительно введенных в компьютер.

Недостатком известного способа является то, что он мало информативен. В частности, этот метод не позволяет получить данные об остаточном ресурсе масла.

Сущность компьютерного способа заключается в следующем. Эталонным пятнам, введенным в компьютер, присваивают соответствующую наработку масла с начала эксплуатации. Затем фиксируют наработку оцениваемого масла с начала эксплуатации при сравнении оцениваемого пятна с эталонным. При фиксации наработки оцениваемого масла одновременно определяют его остаточный ресурс. В результате получают дополнительную информацию о состоянии масла, в соответствии с которой корректируют очередной срок проверки масла, а это позволяет снизить затраты труда на определение его качества.

На практике предложенный способ определения качества моторных масел может быть осуществлен следующим образом. Получают внешний вид эталонных пятен масла и вводят их в компьютер. Для этого, например через каждые 50 моточасов работы двигателя, на фильтровальную бумагу наносят каплю масла, взятую из системы смазки. Выдерживают ее установленное время. Затем с помощью цифрового фотоаппарата или другого электронного средства фиксируют внешний вид каждой полученной капли и вводят эту информацию, а также наработку масла в компьютер. Таким же образом получают и вводят в компьютер информацию о свежем масле. В результате имеют в компьютере банк информации эталонных пятен масла, показатели качества которого находятся в интервале от номинальных до предельных значений. По такой же методике получают и вводят в компьютер данные о внешнем виде проверяемого масла. Компьютер из множества эталонных пятен выбирает то пятно, которое по информационной характеристике наиболее ближе подходит к проверяемому. Данные найденного эталонного пятна, например наработка с начала эксплуатации и остаточный ресурс, появляются на дисплее компьютера. Они наиболее точно соответствуют данным проверяемого масла. Полученная информация автоматически сохраняется и используется в дальнейшем для решения поставленных задач диагностирования.

Перечень приборов теплотехнической лаборатории по анализу масла:

Спектрометры «Барс-3» и «Спектроскан».

Калориметрическая установка для определения содержания серы в топливе, масле.

Прибор ЛК для определения температуры каплепадения.

Прибор ЛП для определения пенетрации.

Прибор К-2 для определения предела прочности смазок.

ИКА «ОСМА-220».

PH-метр «pH-150».

Весы лабораторные.

Сушильный шкаф, аппарат фракционного состава, термостат ЛТН-01.

Барометр- анероид БАММ-1.

Гигрометр ВИТ-2.

Приборы определения вязкости.

Вискозиметры ВПЖ, ВНЖТ, пружинный, «Вискомар».

Анализатор жидкости «Флюорат 02-3М» для определения показателей загрязненных компонентов в воде.

Прибор ЛАЗ-93 для определения температуры застывания масла и топлива.

Центрифуга лабораторная для определения механических примесей в маслах, топливе, смазках.

Прибор ТВ-2 для определения температуры вспышки масла и топлива в открытом тигле.

Аппараты АКОВ для определения массовой доли воды в масле, топливе и смазках.

Приборы определения количества воды в топливах.

Прибор вспышки в закрытом тигле ПВНЗ.

Термометры стеклянные.

Газоанализаторы.

Прибор «SHATOX» для определения октанового, цетанового числа и температуры застывания дизельного топлива.

Основные виды работ:

1. Анализ качества топлива - дизельного, ТСМ, мазутов М40, M100, IFO, MFO, RMD. RMC, RME, а также бензинов и керосинов.

2. Анализ качества смазочных масел - моторных для дизелей и бензиновых двигателей, турбинных, трансмиссионных, гидравлических, компрессорных для воздушных компрессоров, индустриальных, термальных и пр., а также пластичных смазок типа солидола, Литола и др.

6. Анализ качества природной воды из скважин, колодцев и т. п., что позволяет дать заключение о пригодности воды для питья, мытья или для технических, поливочных целей.

7. Анализ качества технической воды - котловой парогенераторов, питательной, добавочной, охлаждающей воды дизелей.

9. Анализ состава накипей, нагаров, отложений, образующихся при эксплуатации судового энергооборудования - необходим для расследования и устранения причин образования отложений и способов их очистки.

10. Проверка пригодности судовых переносных газоанализаторов, подлежащих обязательной проверке. Это газоанализаторы для определения содержания кислорода, взрывоопасных газов, углеводородов нефти, сероводорода, угарного газа, токсических и других вредных и опасных газов.

В лаборатории имеется набор жидких стандартных реактивов для выполнения на судне экспресс-анализов воды на содержание хлоридов, щелочного числа, жесткость и содержание присадок в воде.

Лабораторный анализ моторного масла автомобиля «Лада Ларгус». Был проведен анализ моторного масла первой заливки 16-ти клапанного двигателя Renault устанавливаемого в Lada Largus. В самом начале эксплуатации (март 2013) при пробеге 25 км сливали излишки масла. Именно это мало было направлено в лабораторию «Oil-Club.ru» для выявления его характеристик.

От пресс-центра АВТОВАЗа был получен документ, в котором говорится, что в двигатели, устанавливаемые в «Лада Ларгус» залито моторное масло Shell PC 1021 (ЗАО "Шелл Нефть" г. Москва).

Какое же масло на самом деле в двигателе Lada Largus.

В результате анализа масла было выявлено - масло первой заливки «Лада Ларгус» очень хорошего качества, с отличными низкотемпературными свойствами. По результатам анализа SAE масла: 0W-30 или 0W-20.

15.07.2012
Физические свойства гидравлических масел и их влияние на эксплуатационные характеристики

1. Вязкость, вязкостно-температурные характеристики
Вязкость является важнейшим критерием оценки несущих способностей гидравлического масла. Вязкость дифференцируют по динамическим и кинематическим показателям.
Индустриальные смазочные масла и гидравлические масла классифицируют по ISO классам вязкости на основании их кинематической вязкости, которую, в свою очередь, описывают как отношение динамической вязкости к плотности. Эталонной является температура 40 °С. Официальной единицей измерения (St ) для кинематической вязкости является м 2 /с, а в нефтеперерабатывающей промышленности единицей измерения кинематической вязкости является cSt (сантистокс) или мм 2 /с. Классификация вязкости ISO, DIN 51519 для жидких промышленных смазочных материалов описывает 18 сортов (классов) вязкости от 2 до 1500 мм 2 /с при температуре 40 °С. Каждый сорт определяют по средней вязкости при 40 °С и с допустимым отклонением ±10% от этой величины. Вязкостно-температурная зависимость имеет большое значение для гидравлических масел. Вязкость резко увеличивается с понижением температуры и понижается по мере повышения температуры. В практическом смысле пороговая вязкость жидкости (допустимая вязкость при запуске, прибл. 800—2000 мм 2 /с) необходима для использования в насосах различных типов. Минимально допустимая вязкость при высоких температурах определяется началом фазы граничного трения. Минимальная вязкость не должна быть ниже 7—10 мм 2 /с во избежание недопустимого износа насосов и двигателей. Кривые на вязкостно-температурных графиках описывают зависимость вязкости гидравлических жидкостей от температуры. В линейных условиях В—Т - кривые гиперболичны. Путем математической трансформации эти В— Т - кривые могут быть представлены как прямые линии. Эти линии позволяют точно определять вязкость в широком температурном диапазоне. Индекс вязкости (ИВ) является критерием В— Т -зависимости, а В—Т - кривая — градиентом на графике. Чем выше ИВ гидравлической жидкости, тем меньше изменение вязкости с изменением температуры, т. е. тем более полога В— Т - кривая. Гидравлические масла на базе минеральных масел обычно имеют природный ИВ 95-100. Синтетические гидравлические масла на базе сложных эфиров имеют предельный ИВ 140-180, а полигликоли — природный ИВ 180-200 (рис. 1)

Индекс вязкости может быть также повышен с помощью присадок (полимерных присадок, которые должны обладать стойкостью к сдвигу), называемых присадками, улучшающими ИВ, или вязкостными присадками. Гидравлические масла с высокими ИВ обеспечивают легкий запуск, снижают потери в эксплуатационных характеристиках при низких окружающи температурах и улучшают уплотнения и защиту от износа при высоких рабочих температурах. Высокоиндексные масла повышают эффективность системы и увеличивают срок службы узлов и компонентов, подверженных износу (чем выше вязкость при рабочих температурах, тем лучше коэффициент объема).

2. Зависимость вязкости от давления
За несущую способность смазочной пленки ответственна зависимость вязкости смазочного материала от давления. Динамическая вязкость жидких сред повышается с повышением давления. Ниже приведен способ регулирования зависимости динамической вязкости от давления при постоянной температуре.
Зависимость вязкости от давления, а именно увеличение вязкости по мере повышения давления оказывает положительное влияние на удельную нагрузку (например, на подшипники), потому что вязкость смазочной пленки увеличивается под действием высокого парциального давления с 0 до 2000 атм. Вязкость HFC жидкости увеличивается в два раза, минерального масла — в 30 раз, в HFD жидкости — в 60 раз. Этим объясняется сравнительно короткий срок службы роликовых подшипников, если для их смазки используют (HFA, HFC ) смазочные масла на водной основе. На рис. 2. и 3 показана зависимость вязкости от давления для различных гидравлических жидкостей.

Вязкостно-температурные характеристики могут быть также описаны экспоненциальным выражением:

η = η ο · e αP ,

Где η ο — динамическая вязкость при атмосферном давлении, α — коэффициент зависимости «вязкость-давление», Р —давление. Для HFC α = 3,5 · 10 -4 атм -1 ;
для HFD α = 2,2·10 -3 атм -1 ; для HLP α = 1,7·10 -3 атм -1

3. Плотность
Потери гидравлических жидкостей в трубопроводной обвязке и в элементах гидравлической системы прямо пропорциональны плотности жидкости. Например, потери давления прямо пропорциональны плотности:

ΔP = (ρ/2)·ξ·с 2 ,

Где ρ — плотность жидкости, ξ, — коэффициент сопротивления, с — скорость течения жидкости, а ΔP — потеря давления.
Плотность ρ — это масса единицы объема жидкости.

ρ = m/V (кг/м 3).

Плотность гидравлической жидкости измеряют при температуре 15 °С. Она зависит от температуры и давления, так как объем жидкости увеличивается при увеличении температуры. Таким образом, изменение объема жидкости в результате нагрева происходит по уравнению

ΔV =V ·β темп ΔT ,

Что приводит к изменению плотности:

Δρ = ρ·β темп ΔT .

В гидростатических условиях при температурах от -5 до +150 °С достаточно применения линейной формулы к приведенному выше уравнению. Коэффициент термического объемного расширения β темп может быть применен ко всем типам гидравлических жидкостей.

Так как коэффициент термического расширения минеральных масел приблизительно составляет 7 · 10 -4 К -1 , то объем гидравлической жидкости увеличивается на 0,7%, если ее температура повышается на 10 °С. На рис. 5 показана зависимость объема гидравлических жидкостей от температуры.

Зависимость «плотность—давление» гидравлических жидкостей следует также включить в гидростатическую оценку, так как сжимаемость жидкостей негативно влияет на их динамические характеристики. Зависимость плотности от давления можно просто считывать по соответствующим кривым (рис. 6).

4. Сжимаемость
Сжимаемость гидравлических жидкостей на базе минеральных масел зависит от температуры и давления. При давлениях вплоть до 400 атм и температурах до 70 °С, которые являются предельными для индустриальных систем, сжимаемость ревалентна системе. Гидравлические жидкости, применяемые в большинстве гидравлических систем, можно считать несжимаемыми. Однако при давлениях от 1000 до 10 000 атм могут наблюдаться изменения в сжимаемости среды. Сжимаемость выражается коэффициентом β или модулем М (рис. 7, М = К ).

М = 1/β атм = 1/β · 10 5 Н · м 2 = 1/β · 10 5 Па.

Изменение объема можно определить с помощью уравнения

ΔV =V · β(P max -Р нач)

Где ΔV — изменение объема; Р max — максимальное давление; Р нач — начальное давление.

5. Растворимость газов, кавитация
Воздух и другие газы могут растворяться в жидкостях. Жидкость может абсорбировать газ до состояния насыщения. Это не должно негативно влиять на характеристики жидкости. Растворимость газа в жидкости зависит от базовой составляющей типа газа, давления и температуры. При давлении вплоть до ≈300 атм. растворимость газа пропорциональна давлению и соответствует закону Генри.

V G =V F ·α V ·P/P o ,

Где V G — объем растворенного газа; V F — объем жидкости, Р o — атмосферное давление, P —давление жидкости; α V —коэффициент распределения Бунзена (1,013 мбар,20 °С).
Коэффициент Бунзена в высокой степени зависит от базовой жидкости и показывает, насколько (%) газ растворен в единице объема жидкости в нормальных условиях. Растворенный газ может выделяться из гидравлической жидкости при низком статическом давлении (высокой скорости потока и высоком напряжении сдвига) до тех пор, пока не достигнута новая точка насыщения. Скорость, с которой газ покидает жидкость, обычно превышает скорость, с которой газ абсорбируется жидкостью. Газ, выходящий из жидкости в виде пузырьков, изменяет сжимаемость жидкости аналогично пузырькам воздуха. Даже при низких давлениях небольшое количество воздуха может резко снизить несжимаемость жидкости. В мобильных системах с высокой кратностью циркуляции жидкости содержание нерастворенного воздуха может достигать величин вплоть до 5%. Этот нерастворенный воздух очень негативно влияет на эксплуатационные характеристики, несущую способность и динамику системы (смотри раздел 6 — деаэрация и раздел 7 — пенообразование). Поскольку сжимаемость жидкостей в системах обычно протекает очень быстро, пузырьки воздуха могут внезапно разогреться до высокой температуры (адиабатическая компрессия). В экстремальных случаях может быть достигнута температура возгорания жидкости и иметь место микродизельные эффекты.
Пузырьки газа могут также взрываться в насосах в результате сжатия, что может привести к повреждению вследствие эрозии (которую иногда называют кавитацией или псевдокавитацией). Ситуация может усугубиться, если в жидкости образуются пузырьки паров. Таким образом, кавитация происходит тогда, когда давление падает ниже растворимости газа или ниже давления насыщенных паров жидкости.
Кавитация в основном происходит в открытых системах с постоянным объемом, то есть опасность этого явления актуальна для впускных и выпускных контуров и насосов. Ее причинами могут быть слишком низкое абсолютное давление в результате потерь в скорости потока в узких поперечных сечениях, на фильтрах, коллекторах и дроссельных заслонках, вследствие избыточного напора на входе или потерь давления в результате чрезмерной вязкости жидкости. Кавитация может привести к эрозии насосов, снижению к. п. д., пикам давления и чрезмерному шуму.
Это явление может отрицательно влиять на стабильность дроссельных регуляторов и вызывать вспенивание в емкостях, если смесь жидкость-вода возвращается в емкость при атмосферном давлении.

6. Деаэрация
При возвращении гидравлических жидкостей обратно в резервуары поток жидкости способен увлечь с собой воздух. Это может произойти из-за утечек в трубопроводной обвязке при сужении и частичном вакууме. Турбулентность в резервуаре или локальная кавитация говорит об образовании пузырьков воздуха в жидкости.
Захваченный таким образом воздух должен выйти на поверхность жидкости, в противном случае при попадании в насос он может привести к повреждению других компонентов системы. Скорость, с которой пузырьки воздуха поднимаются на поверхность, зависит от диаметра пузырьков, вязкости жидкости, плотности и качества базового масла. Чем выше качество и чистота базового масла, тем быстрее происходит деаэрация. Маловязкие масла обычно деаэрируются быстрее, чем высоковязкие базовые масла. Это связано со скоростью подъема пузырьков.

C = (ρ FL -ρ L )Χ/η,

Где ρ FL — плотность жидкости; ρ L — плотность воздуха; η— динамическая вязкость; X— константа, зависящая от плотности и вязкости жидкости.
Системы должны быть сконструированы таким образом, чтобы воздух не попадал в жидкость, а в случае попадания увлеченные пузырьки воздуха могли легко выйти. Критическими зонами являются резервуары, которые должны быть снабжены перегородками и воздухоотражателями, и конфигурация трубопроводных обвязок и контуров. Присадки не могут положительно влиять на деаэрационные свойства гидравлических жидкостей. ПАВ (в частности, антипенные присадки на основе силиконов) и загрязняющие примеси (например, пластичные смазки и ингибиторы коррозии) вредоносно влияют на деаэрационные характеристики гидравлических масел. Минеральные масла обычно обладают лучшими деаэрационными свойствами, чем огнестойкие жидкости. Деаэрационные свойства HPLD гидравлической жидкости могут быть сопоставимы со свойствами гидравлических жидкостей HLP .
Испытание на определение деаэрационных свойств описано в стандарте DIN 51 381. Этот метод заключается в нагнетании воздуха в масло. Число деаэрации — это время, которое требуется воздуху (минус 0,2%) для того, чтобы покинуть жидкость при температуре 50 °С в заданных условиях.
Долю диспергированного воздуха определяют путем измерения плотности масляно-воздушной смеси.

7. Пенообразование
Поверхностное вспенивание происходит, когда скорость деаэрации выше скорости, с которой пузырьки воздуха лопаются на поверхности жидкости, т. е. когда образовавшихся пузырьков больше, чем разрушившихся. В худшем случае эта пена может быть выдавлена из бака через отверстия или унесена в насос. Антипенные присадки на основе силиконов или не содержащие силиконов способны ускорить разрушение пузырьков путем снижения поверхностного натяжения пены. Они также негативно влияют на деаэрационные свойства жидкости, что может вызвать проблемы сжимаемости и кавитацию. Поэтому антипенные присадки применяются в очень малых концентрациях (≈ 0,001%). Концентрация антипенной присадки может прогрессивно снижаться в результате старения и осаждения на металлических поверхностях, также проблемы пенообразования часто возникают при использовании старых, уже работавших жидкостей. Последующее введение антипенной присадки следует производить только после консультации с производителем гидравлической жидкости.
Объем пены, образующейся на поверхности жидкости, измеряют по времени (сразу, через 10 мин) и при разных температурах (25 и 95 °С). ПАВ, детергенты или диспергирующие присадки, загрязнители в виде пластичной смазки, ингибиторов коррозии, чистящих средств, СОЖ, побочных продуктов окисления и т. д. могут негативно влиять на эффективность антипенных присадок.

8. Деэмульгирование
Деэмульгирование — это способность гидравлической жидкости отталкивать проникшую воду. Вода в гидравлическую жидкость может попасть в результате утечки из теплообменника, образования конденсированной воды в резервуарах вследствие значительных изменений в уровне масла, плохой фильтрации, загрязнения воды из-за неисправности уплотнений и в экстремальных окружающих условиях. Вода в гидравлической жидкости может вызвать коррозию, кавитацию в насосах, увеличить трение и износ, ускорить разрушение эластомеров и пластиков. Свободную воду следует по возможности быстрее удалять из емкостей с гидравлическими жидкостями через сливные краны. Загрязнение водорастворимыми СОЖ, особенно возможное на станочном оборудовании, может вызывать образование липких остатков после испарения воды. Это может спровоцировать проблемы в насосах, клапанах и цилиндрах. Гидравлическая жидкость должна быстро и полностью отталкивать проникшую в нее воду. Деэмульгирование определяют по DIN 51 599, но этот метод неприменим к гидравлическим жидкостям, содержащим моюще-диспергирующие (DD ) присадки. Деэмульгирование — это время, которое требуется для разделения смесей масла и воды. Параметрами деэмульгирования являются:
. вязкость вплоть до 95 мм 2 /с при 40 °С; температура испытания 54 °С;
. вязкость > 95 мм 2 /с; температура 82 °С.
В гидравлических маслах, содержащих DD присадки, вода, жидкие и твердые загрязняющие примеси удерживаются во взвешенном состоянии. Они могут быть удалены с помощью соответствующих фильтрующих систем без использования гидравлической функции машины, исключая негативное воздействие на гидравлическую жидкость. Поэтому DD гидравлические жидкости часто применяются в гидростатическом станочном оборудовании и в мобильных гидравлических системах.
Для машин с высокой кратностью циркуляции, нуждающихся в постоянной эксплуатационной готовности и перманентно подвергнутых опасности попадания воды и других загрязнителей, применение моющих гидравлических жидкостей является первостепенной областью. Гидравлические жидкости, обладающие деэмульгирующими свойствами, рекомендуются к применению в сталеплавильных и прокатных цехах, где присутствуют большие объемы воды и невысокая кратность циркуляции позволяет производить разделение эмульсий в резервуаре. Деэмульгирующие свойства в модифицированной форме используются для определения совместимости оборудования с гидравлическими маслами. Старение гидравлической жидкости негативно влияет на деэмулыирующие свойства.

9. Температура застывания
Температура застывания — это самая низкая температура, при которой жидкость все еще сохраняет текучесть. Образец жидкости систематически охлаждают и испытывают на текучесть при понижении температуры на каждые 3 °С. Такие параметры, как температура застывания и граничная вязкость, определяют самую низкую температуру, при которой возможно нормальное применение масла.

10. Медная коррозия (испытание на медной пластинке)
Медь и медьсодержащие материалы часто применяются в гидравлических системах. Такие материалы, как латунь, литейная бронза или спеченная бронза содержатся в элементах подшипников, направляющих или в узлах управления, ползунах, гидравлических насосах и моторах. Медные трубы применяются в системах охлаждения. Медная коррозия может привести к отказу всей гидравлической системы, поэтому испытание на коррозию медной пластинки проводят для получения информации о коррозионной агрессивности базовых жидкостей и присадок по отношению к материалам, содержащим медь. Методика испытания на коррозионную агрессивность гидравлических жидкостей на минеральной основе, т. е. биологически разлагаемых жидкостей, по отношению к цветным металлам известна как метод Линде (отборочный метод испытания биологически разлагаемых масел на коррозионную агрессивность по отношению к медным сплавам) (SAE Технический бюллетень 981 516, апрель 1998 г.), также известный как VDMA 24570 (VDMA 24570 — биологически быстро разлагаемые гидравлические жидкости — воздействие на сплавы из цветных металлов 03-1999 на немецком языке).
В соответствии со стандартом DIN 51 759, коррозия на медной пластинке может выражаться в форме изменения цвета или образования чешуек. Шлифовальную медную пластинку погружают в испытуемую жидкость на заданное время при заданной температуре. Гидравлические и смазочные масла обычно испытывают при температуре 100 °С. Степень коррозии оценивают в баллах:
1 — легкое изменение цвета;
2 — умеренное изменение цвета;
3 — сильное изменение цвета;
4 — коррозия (потемнение).

11. Содержание воды (Метод Карла Фишера)
Если вода попадает в гидравлическую систему частично тонкодиспергированной настолько, что она проникает в масляную фазу, то в зависимости от плотности гидравлической жидкости вода может также выделяться из масляной фазы. Эту возможность необходимо учитывать при отборе проб для определения содержания воды.
Определение содержания воды в мг/кг (масс) по методу Карла Фишера связано с введением раствора Карла Фишера при прямом или косвенном титровании.

12. Стойкость к старению (метод Баадера)
Это попытка повторить изучение влияния воздуха, температуры и кислорода на гидравлические жидкости в лабораторных условиях. Была предпринята попытка искусственно ускорить старение гидравлических масел путем повышения температуры выше уровней практического применения, а также уровня кислорода в присутствии металлических катализаторов. Увеличение вязкости и увеличение кислотного числа (свободная кислота) регистрируют и оценивают. Результаты лабораторных испытаний переводят на практические условия. Метод Баадера — это практический способ испытания гидравлических и смазочных масел на старение.
В течение заданного периода времени образцы подвергают старению при заданных температуре и давлении потока воздуха при периодическом погружении в масло медного змеевика, действующего в качестве ускорителя окисления. В соответствии с DIN 51 554-3 С, CL и CLP жидкости и HL , HLP , НМ гидравлические масла испытывают на окислительную стабильность при температуре 95 °С. Число омыления выражается в мг КОН/г.

13. Стойкость к старению (метод TOST )
Окислительную стабильность масел для паровых турбин и гидравлических масел, содержащих присадки, определяют в соответствии с DIN 51 587. Метод TOST уже много лет применяется для испытания турбинных масел и гидравлических жидкостей на базе минеральных масел. В модифицированном виде (без воды) сухой TOST метод применяется для определения окислительной стойкости гидравлических масел на базе сложных эфиров.
Старение смазочных масел характеризуется увеличением кислотного числа, когда масло подвергается воздействию кислорода, воды, стали и меди на протяжении максимум 1000 ч при 95 °С (кривая нейтрализации по мере старения). Максимально допустимо увеличение кислотного числа — 2 мг КОН/г после 1000 ч.

14. Кислотное число (число нейтрализации)
Кислотное число гидравлического масла увеличивается в результате старения, перегрева или окисления. Образовавшиеся продукты старения могут агрессивно действовать на насосы и подшипники гидравлической системы. Поэтому кислотное число является важным критерием оценки состояния гидравлической жидкости.
Кислотное число указывает на количество кислотных или щелочных веществ в смазочном масле. Кислоты в минеральных маслах могут агрессивно действовать на конструкционные материалы гидравлической системы. Высокое содержание кислоты нежелательно, так как возможно в результате окисления.

15. Защитные антиокислительные свойства по отношению к стали/черным металлам
Антиокислительные свойства турбинных и гидравлических масел, содержащих присадки, по отношению к стали/черным металлам определяют в соответствии со стандартом DIN 51 585.
Гидравлические жидкости часто содержат диспергированную, растворенную или свободную воду, поэтому гидравлическая жидкость должна обеспечивать защиту от коррозии всех смачиваемых узлов в любых условиях эксплуатации, включая загрязнение водой. Этот метод испытания определяет характеристики антикоррозионных присадок в ряде различных условий эксплуатации.
Испытуемое масло перемешивают с дистиллированной водой (метод А) или с искусственной морской водой (метод В), непрерывно помешивая (в течение 24 ч при температуре 60 °С) стальным стержнем, погруженным в смесь. После стальной стержень исследуют на коррозию. Результаты позволяют оценивать антикоррозионные защитные свойства масла по отношению к стальным компонентам, находящимся в контакте с водой или с водяными парами:
степень коррозии 0 означает отсутствие коррозии,
степень 1 — незначительную коррозию;
степень 2 — умеренную коррозию;
степень 3 — сильную коррозию.

16. Противоизносные свойства (четырехшариковая машина Shell ; VKA, DIN 51350)
Четырехшариковый аппарат компании Shell служит для измерения противоизносных и противозадирных свойств гидравлических жидкостей. Несущую способность гидравлических жидкостей испытывают в условиях граничного трения. Метод служит для определения величин для смазочных масел с присадками, которые выдерживают высокое давление в условиях граничного трения между поверхностями скольжения. Смазочное масло испытывают в четырехшариковом аппарате, который состоит из одного (центрального) вращающегося шарика и трех неподвижных шариков, расположенных в виде кольца. В постоянных условиях испытаний и с заданной продолжительностью измеряют диаметр пятна контакта на трех стационарных шариках или нагрузку на вращающийся шарик, которая может увеличиваться до сваривания с остальными тремя шариками.

17. Стойкость к сдвигу смазочных масел, содержащих полимеры
В смазочные масла для повышения вязкостно-температурных характеристик вводят полимеры, применяемые в качестве присадок, улучшающих индекс вязкости. По мере увеличения молекулярной массы эти вещества становятся все более чувствительными к механическим нагрузкам, например к таким нагрузкам, которые существуют между поршнем и его цилиндром. Для оценки стойкости масел к сдвигу в различных условиях существуют несколько методов испытаний:
DIN 5350-6, четырехшариковый метод, DIN 5354-3, FZG метод и DIN 51 382, метод впрыска дизельного топлива.
Снижение относительной вязкости вследствие сдвига после 20-часового испытания по DIN 5350-6 (определение стойкости к сдвигу смазочных масел, содержащих полимеры, применяемых для роликовых подшипников с коническим вкладышем) применяется в соответствии с DIN 51 524-3 (2006); рекомендуется снижение вязкости вследствие сдвига менее чем на 15%.

18. Механические испытания гидравлических жидкостей в ротационных крыльчатых насосах (DIN 51 389-2)
Испытание на насосе Виккерса и насосах других производителей позволяет реально оценивать характеристики гидравлических жидкостей. Однако в настоящее время в стадии разработки находятся альтернативные методы испытания (в частности, проект DGMK 514 — механические испытания гидравлических жидкостей).
Метод Виккерса служит для определения противоизносных свойств гидравлических жидкостей в ротационном крыльчатом насосе при заданных величинах температуры и давления (140 атм, 250 ч рабочей вязкости жидкости 13 мм 2 /с при изменяющейся температуре). По окончании испытания обследуют кольца и крылья на износ {Vickers V -104С 10 или Vickers V -105С 10). Значения максимально допустимого износа: < 120 мг для кольца и < 30 мг для крыльев.

19. Противоизносные свойства (испытание на шестеренном FZG стенде; DIN 534-1и-2)
Гидравлические жидкости, особенно высоковязкие сорта, применяются в качестве гидравлических и смазочных масел в комбинированных системах. Динамическая вязкость является главным фактором противоизносных характеристик в режиме гидродинамической смазки. При малых скоростях скольжения или высоких давлениях в условиях граничного трения противоизносные свойства жидкости зависят от примененных присадок (образование реактивного слоя). Эти граничные условия воспроизводятся при испытании на FZG стенде.
Этот метод применяется главным образом для определения граничных характеристик смазочных материалов. Определенные шестерни, вращающиеся с определенной скоростью, смазывают разбрызгиванием или распылением масла, начальную температуру которого регистрируют. Нагрузку на ножки зубьев ступенчато повышают и записывают характеристики внешнего вида ножек зубьев. Эту процедуру повторяют до конечной 12-й ступени нагрузки: давление по Герцу на 10-й ступени нагрузки в полосе зацепления составляет 1 539 Н/мм2; на ступени 11 — 1 691 Н/мм 2 ; на 12-й ступени — 1 841 Н/мм 2 . Исходная температура на ступени 4 составляет 90 °С, периферическая скорость — 8,3 м/с, предельную температуру не определяют; применяют геометрию шестерен А.
Определяют нагрузочную ступень отказа по DIN 51 524-2. Для положительного результата это должна быть ступень не менее 10-й. Гидравлические жидкости, отвечающие требованиям ISO VG 46, не содержащие противоизносных присадок, обычно достигают нагрузочной ступени 6 (≈ 929 Н/мм 2). Гидравлические жидкости, содержащие цинк, обычно достигают не менее 10—11-й нагрузочной ступени до разрушения. Не содержащие цинка так называемые ZAF гидравлические жидкости выдерживают ступень нагрузки 12 или выше.

Роман Маслов.
По материалам зарубежных изданий.

Коэффициент вязкости - это ключевой параметр рабочей жидкости либо газа. В физических терминах вязкость может быть определена как внутреннее трение, вызываемое движением частиц, составляющих массу жидкой (газообразной) среды, или, более просто, сопротивлением движению.

Что такое вязкость

Простейший определения вязкости: на гладкую наклонную поверхность одновременно выливают одинаковое количество воды и масла. Вода стекает быстрее масла. Она более текучая. Движущемуся маслу мешает быстро стекать более высокое трение между его молекулами (внутреннее сопротивление - вязкость). Таким образом, вязкость жидкости обратно пропорциональна ее текучести.

Коэффициент вязкости: формула

В упрощенном виде процесс движения вязкой жидкости в трубопроводе можно рассмотреть в виде плоских параллельных слоев А и В с одинаковой площадью поверхности S, расстояние между которыми составляет величину h.

Эти два слоя (А и В) перемещаются с различными скоростями (V и V+ΔV). Слой А, имеющий наибольшую скорость (V+ΔV), вовлекает в движение слой B, движущийся с меньшей скоростью (V). В то же время слой B стремится замедлить скорость слоя А. Физический смысл коэффициента вязкости заключается в том, что трение молекул, представляющих собой сопротивление слоев потока, образует силу, которую описал следующей формулой:

F = µ × S × (ΔV/h)

  • ΔV - разница скоростей движений слоев потока жидкости;
  • h - расстояние между слоями потока жидкости;
  • S - площадь поверхности слоя потока жидкости;
  • μ (мю) - коэффициент, зависящий от называется абсолютной динамической вязкостью.

В единицах измерения системы СИ формула выглядит следующим образом:

µ = (F × h) / (S × ΔV) = [Па × с] (Паскаль × секунда)

Здесь F - сила тяжести объема рабочей жидкости.

Величина вязкости

В большинстве случаев коэффициент измеряется в сантипуазах (сП) в соответствии с системой единиц СГС (сантиметр, грамм, секунда). На практике вязкость связана соотношением массы жидкости к ее объему, то есть с плотностью жидкости:

  • ρ - плотность жидкости;
  • m - масса жидкости;
  • V - объем жидкости.

Отношение между динамической вязкостью (μ) и плотностью (ρ) называется кинематической вязкостью ν (ν - по-гречески - ню):

ν = μ / ρ = [м 2 /с]

Кстати, методы определения коэффициента вязкости разные. Например, кинематическая вязкость по-прежнему измеряется в соответствии с системой СГС в сантистоксах (сСт) и в дольных величинах - стоксах (Ст):

  • 1Ст = 10 -4 м 2 /с = 1 см 2 /с;
  • 1сСт = 10 -6 м 2 /с = 1 мм 2 /с.

Определение вязкости воды

Коэффициент вязкости воды определяется измерением времени течения жидкости через калиброванную капиллярную трубку. Это устройство калибруется с помощью стандартной жидкости известной вязкости. Для определения кинематической вязкости, измеряемой в мм 2 /с, время течения жидкости, измеряемое в секундах, умножается на постоянную величину.

В качестве единицы сравнения используется вязкость дистиллированной воды, величина которой почти постоянна даже при изменении температуры. Коэффициент вязкости - это отношение времени в секундах, которое необходимо фиксированному объему дистиллированной воды для истечения из калиброванного отверстия, к аналогичному значению для испытываемой жидкости.

Вискозиметры

Вязкость измеряется в градусах Энглера (°Е), универсальных секундах Сейболта ("SUS) или градусах Редвуда (°RJ) в зависимости от типа применяемого вискозиметра. Три типа вискозиметров отличаются только количеством вытекающей жидкой среды.

Вискозиметр, измеряющий вязкость в европейской единице градус Энглера (°Е), рассчитан на 200 см 3 вытекающий жидкой среды. Вискозиметр, измеряющий вязкость в универсальных секундах Сейболта ("SUS или "SSU), используемый в США, содержит 60 см 3 испытываемой жидкости. В Англии, где используются градусы Редвуда (°RJ), вискозиметр проводит измерения вязкости 50 см 3 жидкости. Например, если 200 см 3 определенного масла течет в десять раз медленнее, чем аналогичный объем воды, то вязкость по Энглеру составляет 10°Е.

Поскольку температура является ключевым фактором, изменяющим коэффициент вязкости, то измерения обычно проводятся сначала при постоянной температуре 20°С, а затем при более высоких ее значениях. Результат, таким образом, выражается путем добавления соответствующей температуры, например: 10°Е/50°С или 2,8°Е/90°С. Вязкость жидкости при 20°С выше, чем ее вязкость при более высоких температурах. Гидравлические масла имеют следующую вязкость при соответствующих температурах:

190 сСт при 20°С = 45,4 сСт при 50°С = 11,3 сСт при 100°С.

Перевод значений

Определение коэффициента вязкости происходит в разных системах (американской, английской, СГС), и поэтому часто требуется перевести данные из одной мерной системы в другую. Для перевода значений вязкости жидкости, выраженных в градусах Энглера, в сантистоксы (мм 2 /с) используют следующую эмпирическую формулу:

ν(сСт) = 7,6 × °Е × (1-1/°Е3)

Например:

  • 2°Е = 7,6 × 2 × (1-1/23) =15,2 × (0,875) = 13,3 сСт;
  • 9°Е = 7,6 × 9 × (1-1/93) =68,4 × (0,9986) = 68,3 сСт.

С целью быстрого определения стандартной вязкости гидравлического масла формула может быть упрощена следующим образом:

ν(сСт) = 7,6 × °Е(мм 2 /с)

Имея кинематическую вязкость ν в мм 2 /с или сСт, можно перевести ее в коэффициент динамической вязкости μ, используя следующую зависимость:

Пример. Суммируя различные формулы перевода градусов Энглера (°Е), сантистоксов (сСт) и сантипуазов (сП), предположим, что гидравлическое масло с плотностью ρ=910 кг/м 3 имеет кинематическую вязкость 12°Е, что в единицах сСт составляет:

ν = 7,6 × 12 × (1-1/123) = 91,2 × (0,99) = 90,3 мм 2 /с.

Поскольку 1сСт = 10 -6 м 2 /с и 1сП = 10 -3 Н×с/м 2 , то динамическая вязкость будет равна:

μ =ν × ρ = 90,3 × 10 -6 · 910 = 0,082 Н×с/м 2 = 82 сП.

Коэффициент вязкости газа

Он определяется составом (химическим, механическим) газа, воздействующей температурой, давлением и применяется в газодинамических расчетах, связанных с движением газа. На практике вязкость газов учитывается при проектировании разработок газовых месторождений, где ведется расчет изменений коэффициента в зависимости от изменений газового состава (особенно актуально для газоконденсатных месторождений), температуры и давления.

Рассчитаем коэффициент вязкости воздуха. Процессы будут аналогичными с рассмотренными выше двумя потоками воды. Предположим, параллельно движутся два газовых потока U1 и U2, но с разной скоростью. Между слоями будет происходить конвекция (взаимное проникновение) молекул. В итоге импульс движущегося быстрее потока воздуха будет уменьшаться, а изначально движущегося медленнее - ускоряться.

Коэффициент вязкости воздуха, согласно закону Ньютона, выражается следующей формулой:

F =-h × (dU/dZ) × S

  • dU/dZ является градиентом скорости;
  • S - площадь воздействия силы;
  • Коэффициент h - динамическая вязкость.

Индекс вязкости

Индекс вязкости (ИВ) - это параметр, коррелирующий изменение вязкости и температуры. Корреляционная зависимость является статистической взаимосвязью, в данном случае двух величин, при которой изменение температуры сопутствует систематическому изменению вязкости. Чем выше индекс вязкости, тем меньше изменения между двумя величинами, то есть вязкость рабочей жидкости более стабильна при изменении температуры.

Вязкость масел

У основ современных масел индекс вязкости ниже 95-100 единиц. Поэтому в гидросистемах машин и оборудования могут использоваться достаточно стабильные рабочие жидкости, которые ограничивают широкое изменение вязкости в условиях критических температур.

«Благоприятный» коэффициент вязкости можно поддерживать введением в масло специальных присадок (полимеров), получаемых при Они повышают индекс вязкости масел за счет ограничения изменения этой характеристики в допустимом интервале. На практике при введении необходимого количества присадок низкий индекс вязкости базового масла может быть повышен до 100-105 единиц. Вместе с тем получаемая таким образом смесь ухудшает свои свойства при высоком давлении и тепловой нагрузке, снижая тем самым эффективность присадки.

В силовых контурах мощных гидросистем должны применяться рабочие жидкости с индексом вязкости 100 единиц. Рабочие жидкости с присадками, повышающими индекс вязкости, применяются в контурах гидроуправления и других системах, работающих в диапазоне низких/средних давлений, в ограниченном интервале изменения температур, с небольшими утечками и в периодическом режиме. С возрастанием давления возрастает и вязкость, но этот процесс возникает при давлениях свыше 30,0 МПа (300 бар). На практике этим фактором часто пренебрегают.

Измерение и индексация

В соответствии с международными стандартами ISO, коэффициент вязкости воды (и прочих жидких сред) выражается в сантистоксах: сСт (мм 2 /с). Измерения вязкости технологических масел должны проводиться при температурах 0°С, 40°С и 100°С. В любом случае в коде марки масла вязкость должна указываться цифрой при температуре 40°С. В ГОСТе значение вязкости дается при 50°С. Марки, наиболее часто применяемые в машиностроительной гидравлике, варьируются от ISO VG 22 до ISO VG 68.

Гидравлические масла VG 22, VG 32, VG 46, VG 68, VG 100 при температуре 40°С имеют значения вязкости, соответствующие их маркировке: 22, 32, 46, 68 и 100 сСт. Оптимальная кинематическая вязкость рабочей жидкости в гидросистемах лежит в диапазоне от 16 до 36 сСт.

Американское Общество автомобильных инженеров (Society of Automotive Engineers - SAE) установило диапазоны изменения вязкости при конкретных температурах и присвоило им соответствующие коды. Цифра, следующая за буквой W, - абсолютный динамический коэффициент вязкости μ при 0°F (-17,7°С), а кинематическая вязкость ν определялась при 212°F (100°С). Эта индексация касается всесезонных масел, применяемых в автомобильной промышленности (трансмиссионные, моторные и т. д.).

Влияние вязкости на работу гидравлики

Определение коэффициента вязкости жидкости представляет не только научно-познавательный интерес, но и несет в себе важное практическое значение. В гидросистемах рабочие жидкости не только передают энергию от насоса к гидродвигателям, но также смазывают все детали компонентов и отводят выделяемое тепло от пар трения. Не соответствующая режиму работы вязкость рабочей жидкости может серьезно нарушать эффективность всей гидравлики.

Высокая вязкость рабочей жидкости (масло очень высокой плотности) приводит к следующим негативным явлениям:

  • Повышенное сопротивление течению гидравлической жидкости вызывает излишнее падение давления в гидросистеме.
  • Замедление скорости управления и механических движений исполнительных механизмов.
  • Развитие кавитации в насосе.
  • Нулевое или слишком низкое выделение воздуха из масла в гидробаке.
  • Заметная потеря мощности (снижение КПД) гидравлики из-за высоких затрат энергии на преодоление внутреннего трения жидкости.
  • Повышенный крутящий момент первичного двигателя машины, вызываемый возрастающей нагрузкой на насосе.
  • Рост температуры гидравлической жидкости, порождаемый повышенным трением.

Таким образом, физический смысл коэффициента вязкости заключается в его влиянии (позитивном либо негативном) на узлы и механизмы транспортных средств, станков и оборудования.

Потеря мощности гидросистем

Низкая вязкость рабочей жидкости (масло невысокой плотности) приводит к следующим негативным явлениям:

  • Падение объемного КПД насосов в результате возрастающих внутренних утечек.
  • Возрастание внутренних утечек в гидрокомпонентах всей гидросистемы - насосах, клапанах, гидрораспределителях, гидромоторах.
  • Повышенный износ качающих узлов и заклинивание насосов по причине недостаточной вязкости рабочей жидкости, необходимой для обеспечения смазки трущихся деталей.

Сжимаемость

Любая жидкость под действием давления сжимается. В отношении масел и СОЖ, используемых в машиностроительной гидравлике, эмпирически установлено, что процесс сжатия обратно пропорционален величине массы жидкости на ее объем. Величина сжатия выше для минеральных масел, значительно ниже для воды и гораздо ниже для синтетических жидкостей.

В простых гидросистемах низкого давления сжимаемость жидкости ничтожно мало влияет на уменьшение первоначального объема. Но в мощных машинах с гидроприводом высокого давления и крупными гидроцилиндрами этот процесс проявляет себя заметно. У гидравлических при давлении в 10,0 МПа (100 бар) объем уменьшается на 0,7%. При этом на изменение объема сжатия в небольшой степени влияют кинематическая вязкость и тип масла.

Вывод

Определение коэффициента вязкости позволяет прогнозировать работу оборудования и механизмов при различных условиях с учетом изменения состава жидкости либо газа, давления, температуры. Также контроль этих показателей актуален в нефтегазовой сфере, коммунальном хозяйстве, других отраслях промышленности.